A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications

被引:0
作者
Le Quang Thuy
Trinh Ngoc Hai
机构
[1] Hanoi University of Science and Technology,School of Applied Mathematics and Informatics
来源
Journal of Optimization Theory and Applications | 2017年 / 175卷
关键词
Bilevel equilibrium problems; Subgradient method; Projection method; Strong monotonicity; Pseudoparamonotonicity; 65 K10; 65 K15; 90 C25; 90 C33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new algorithm for solving a bilevel equilibrium problem in a real Hilbert space. In contrast to most other projection-type algorithms, which require to solve subproblems at each iteration, the subgradient method proposed in this paper requires only to calculate, at each iteration, two subgradients of convex functions and one projection onto a convex set. Hence, our algorithm has a low computational cost. We prove a strong convergence theorem for the proposed algorithm and apply it for solving the equilibrium problem over the fixed point set of a nonexpansive mapping. Some numerical experiments and comparisons are given to illustrate our results. Also, an application to Nash–Cournot equilibrium models of a semioligopolistic market is presented.
引用
收藏
页码:411 / 431
页数:20
相关论文
共 50 条
  • [41] A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems
    Bello Cruz, J. Y.
    Santos, P. S. M.
    Scheimberg, S.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 159 (03) : 562 - 575
  • [42] A Two-Phase Algorithm for a Variational Inequality Formulation of Equilibrium Problems
    J. Y. Bello Cruz
    P. S. M. Santos
    S. Scheimberg
    Journal of Optimization Theory and Applications, 2013, 159 : 562 - 575
  • [43] Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions
    Ablaev, S. S.
    Stonyakin, F. S.
    Alkousa, M. S.
    Gasnikov, A. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (SUPPL 1) : S1 - S18
  • [44] Adaptive Subgradient Methods for Mathematical Programming Problems with Quasiconvex Functions
    S. S. Ablaev
    F. S. Stonyakin
    M. S. Alkousa
    A. V. Gasnikov
    Proceedings of the Steklov Institute of Mathematics, 2023, 323 : S1 - S18
  • [45] STOCHASTIC SUBGRADIENT METHOD FOR QUASI-CONVEX OPTIMIZATION PROBLEMS
    Hu, Yaohua
    Yu, Carisa Kwok Wai
    Li, Chong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (04) : 711 - 724
  • [46] Inexact subgradient methods for quasi-convex optimization problems
    Hu, Yaohua
    Yang, Xiaoqi
    Sim, Chee-Khian
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 240 (02) : 315 - 327
  • [47] ON THE BEHAVIOR OF SUBGRADIENT PROJECTIONS METHODS FOR CONVEX FEASIBILITY PROBLEMS IN EUCLIDEAN SPACES
    Butnariu, Dan
    Censor, Yair
    Gurfil, Pini
    Hadar, Ethan
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (02) : 786 - 807
  • [48] Convergence rates of subgradient methods for quasi-convex optimization problems
    Hu, Yaohua
    Li, Jiawen
    Yu, Carisa Kwok Wai
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 77 (01) : 183 - 212
  • [49] A MODIFIED PARALLEL HYBRID SUBGRADIENT EXTRAGRADIENT METHOD OF VARIATIONAL INEQUALITY PROBLEMS
    Kitisak, Ponkamon
    Cholamjiak, Watcharaporn
    Yambangwai, Damrongsak
    Jaidee, Ritthicha
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 261 - 274
  • [50] Primal-dual subgradient method for constrained convex optimization problems
    Metel, Michael R.
    Takeda, Akiko
    OPTIMIZATION LETTERS, 2021, 15 (04) : 1491 - 1504