Weighted product Hardy space associated with operators

被引:0
作者
Qingquan Deng
Djalal Eddine Guedjiba
机构
[1] Central China Normal University,School of Mathematics and Statistics, Hubei Province Key Laboratory of Mathematical Physics
[2] University of Batna 2,Department of Mathematics
来源
Frontiers of Mathematics in China | 2020年 / 15卷
关键词
Produce Hardy space; weights; Davies-Gaffney estimates; 42B20; 42B25; 46B70;
D O I
暂无
中图分类号
学科分类号
摘要
Assuming that the operators L1, L2 are self-adjoint and e−tLi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm{e}}^{ - t{L_i}}}$$\end{document} (i = 1, 2) satisfy the generalized Davies-Gaffney estimates, we shall prove that the weighted Hardy space HL1,L2,ω1(ℝn1×ℝn2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{{L_1},{L_2},\omega }^1({\mathbb{R}^{{n_1}}} \times {\mathbb{R}^{{n_2}}})$$\end{document} associated to operators L1, L2 on product domain, which is defined in terms of area function, has an atomic decomposition for some weight ω.
引用
收藏
页码:649 / 683
页数:34
相关论文
共 75 条
  • [1] Bownik M(2010)Weighted anisotropic product Hardy spaces and boundedness of sublinear operators Math Nachr 283 392-442
  • [2] Li B(2010)Boundedness of sublinear operators on Hardy spaces and its application J Math Soc Japan 62 321-353
  • [3] Yang D(1980)A continuous version of Ann of Math 112 179-201
  • [4] Zhou Y(1982) with BMO on the bidisc Amer J Math 104 445-468
  • [5] Chang D C(1985)The Calderón-Zygmund decomposition on product domains Bull Amer Math Soc 12 1-43
  • [6] Yang D C(2016)Some resent developments in Fourier analysis and Math Z 282 1033-1065
  • [7] Zhou Y(2017)-theory on product domains J Fourier Anal Appl 23 21-64
  • [8] Chang S-Y A(2008)Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type Proc Lond Math Soc 96 507-544
  • [9] Fefferman R(2007)Marcinkiewicz-type spectral multipliers on Hardy and Lebesgue spaces on product spaces of homogeneous type J Geom Anal 17 455-483
  • [10] Chang S-Y A(2012)Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem J Funct Anal 263 604-674