Supported lipid bilayer/carbon nanotube hybrids

被引:0
|
作者
Xinjian Zhou
Jose M. Moran-Mirabal
Harold G. Craighead
Paul L. McEuen
机构
[1] Laboratory of Atomic and Solid-State Physics,
[2] Cornell University,undefined
[3] Ithaca,undefined
[4] Applied and Engineering Physics,undefined
[5] Cornell University,undefined
[6] Ithaca,undefined
来源
Nature Nanotechnology | 2007年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecules can diffuse freely across the nanotube, a membrane-bound protein (tetanus toxin) sees the nanotube as a barrier. Moreover, the size of the barrier depends on the diameter of the nanotube—with larger nanotubes presenting bigger obstacles to diffusion. We then demonstrate detection of protein binding (streptavidin) to the supported lipid bilayer using the nanotube transistor as a charge sensor. This system can be used as a platform to examine the interactions of single molecules with carbon nanotubes and has many potential applications for the study of molecular recognition and other biological processes occurring at cell membranes.
引用
收藏
页码:185 / 190
页数:5
相关论文
共 50 条
  • [31] Carbon nanotube-supported graphene oxide nanoribbon bilayer membrane for high-performance diafiltration
    Choi, Yunkyu
    Kang, Junhyeok
    Choi, Eunji
    Kim, Ju Yeon
    Kim, Jeong Pil
    Kim, Ji Hoon
    Kwon, Ohchan
    Kim, Dae Woo
    CHEMICAL ENGINEERING JOURNAL, 2022, 427
  • [32] Effects of direct current bias voltages on supported bilayer lipid membranes on a glassy carbon electrode
    Zhang, Hongwei
    Zhang, Zhanjun
    Li, Jingjian
    Cai, Shengmin
    ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (04) : 605 - 609
  • [33] Substrate-supported lipid nanotube arrays
    Smirnov, AI
    Poluektov, OG
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (28) : 8434 - 8435
  • [34] Tubulation of Supported Lipid Bilayer Membranes Induced by Photosensitized Lipid Oxidation
    Baxter, Ashley M.
    Jordan, Luke R.
    Kullappan, Monicka
    Wittenberg, Nathan J.
    LANGMUIR, 2021, 37 (19) : 5753 - 5762
  • [35] Simulations of lipid transfer between a supported lipid bilayer and adsorbing vesicles
    Dimitrievski, Kristian
    Kasemo, Bengt
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 75 (02) : 454 - 465
  • [36] Structural defects of a supported lipid bilayer induced by photosensitized lipid oxidation
    Baxter, Ashley M.
    Wittenberg, Nathan J.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 365A - 365A
  • [37] Mechanical, thermal and decomposition behavior of poly(ε-caprolactone) nanocomposites with clay-supported carbon nanotube hybrids
    Terzopoulou, Zoe
    Bikiaris, Dimitrios N.
    Triantafyllidis, Konstantinos S.
    Potsi, Georgia
    Gournis, Dimitrios
    Papageorgiou, George Z.
    Rudolf, Petra
    THERMOCHIMICA ACTA, 2016, 642 : 67 - 80
  • [38] Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications
    Yang, Hongxia
    Wang, Nan
    Xu, Qun
    Chen, Zhimin
    Ren, Yumei
    Razal, Joselito M.
    Chen, Jun
    2D MATERIALS, 2014, 1 (03):
  • [39] Kabob-like carbon nanotube hybrids
    Liu, YY
    Wang, RH
    Chen, W
    Chen, XQ
    Hu, ZG
    Cheng, XY
    Xin, HZJ
    CHEMISTRY LETTERS, 2006, 35 (02) : 200 - 201
  • [40] Unzipped Multiwalled Carbon Nanotube Oxide/Multiwalled Carbon Nanotube Hybrids for Polymer Reinforcement
    Fan, Jinchen
    Shi, Zixing
    Tian, Ming
    Wang, Jialiang
    Yin, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (11) : 5956 - 5965