A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension

被引:12
作者
Huai-Dong Cao
Haizhong Li
机构
[1] Lehigh University,Department of Mathematics
[2] Tsinghua University,Department of Mathematical Sciences
来源
Calculus of Variations and Partial Differential Equations | 2013年 / 46卷
关键词
Primary 53C44; Secondary 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove a classification theorem for self-shrinkers of the mean curvature flow with |A|2 ≤ 1 in arbitrary codimension. In particular, this implies a gap theorem for self-shrinkers in arbitrary codimension.
引用
收藏
页码:879 / 889
页数:10
相关论文
共 23 条
[1]  
Abresch U.(1986)The normalized curve shortening flow and homothetic solutions J. Differ. Geom. 23 175-196
[2]  
Langer J.(1967)Minimal immersions of surfaces in Euclidean spheres J. Differ. Geom. 1 111-125
[3]  
Calabi E.(2007)-minimal submanifolds in space forms Ann. Glob. Anal. Geom. 32 311-341
[4]  
Cao L.F.(2010)On complete gradient shrinking Ricci solitons J. Differ. Geom. 85 175-186
[5]  
Li H.(2012)Generic mean curvature flow I: generic singularities Ann. Math. 175 755-833
[6]  
Cao H.-D.(1989)Mean curvature evolution of entire graphs Ann. Math. 130 453-471
[7]  
Zhou D.(1990)Asymptotic behavior for singularities of the mean curvature flow J. Differ. Geom. 31 285-299
[8]  
Colding T.H.(2011)Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers Commun. Anal. Geom. 19 1-27
[9]  
Minicozzi W.P.(2002)Willmore submanifolds in a sphere Math. Res. Lett. 9 771-790
[10]  
Ecker K.(1975)Curvature estimates for minimal hypersurfaces Acta Math. 134 275-288