Visual analysis of air pollution spatio-temporal patterns

被引:0
作者
Jiayang Li
Chongke Bi
机构
[1] Tianjin University,College of Intelligence and Computing
来源
The Visual Computer | 2023年 / 39卷
关键词
Air pollution; Transport pattern; Sketch match; Visual analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Advances in air monitoring methods have made it possible to analyze large-scale air pollution phenomena. Mining potential air pollution information from large-scale air pollution data is an important issue in the current environmental field. Although direct data visualization provides an intuitive presentation, the method is less applicable in long-time domains with high temporal resolution. To better meet the analysis needs of domain experts, we design a visual analysis framework based on friendly multi-view interactions and novel visual view designs. This framework can explore the spatiotemporal dynamics of multiple pollution data. In this paper, a two-stage cluster analysis method is proposed to extract possible transport patterns from large-scale pollutant transport trajectories. This method will be substantially helpful for domain experts to make relevant decisions. At the same time, the index is constructed from long-time series data at the grid point in the specific transport trajectories. This structure can help experts complete the sketch match with custom time resolution. It can assist domain experts in extracting key possible time-varying features. Finally, we verified the validity through spatial and temporal case analysis for pollutant data.
引用
收藏
页码:3715 / 3726
页数:11
相关论文
共 50 条
[41]   Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling [J].
Liu, Liyan ;
Zhan, Hongxin ;
Liu, Jiaxin ;
Man, Jiaju .
JOURNAL OF VISUALIZATION, 2019, 22 (01) :141-160
[42]   Hot Public Appeal Extraction and Visual Analysis Combined BERT and Spatio-Temporal Location [J].
Fan, Wei ;
Yang, Ruhong .
SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2022, 2022, 13614 :207-217
[43]   EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption [J].
Yong Xiao ;
Kaihong Zheng ;
Supaporn Lonapalawong ;
Wenjie Lu ;
Zexian Chen ;
Bin Qian ;
Tianye Zhang ;
Xin Wang ;
Wei Chen .
Frontiers of Computer Science, 2022, 16
[44]   Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling [J].
Liyan Liu ;
Hongxin Zhan ;
Jiaxin Liu ;
Jiaju Man .
Journal of Visualization, 2019, 22 :141-160
[45]   EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption [J].
Xiao, Yong ;
Zheng, Kaihong ;
Lonapalawong, Supaporn ;
Lu, Wenjie ;
Chen, Zexian ;
Qian, Bin ;
Zhang, Tianye ;
Wang, Xin ;
Chen, Wei .
FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
[46]   EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption [J].
XIAO Yong ;
ZHENG Kaihong ;
LONAPALAWONG Supaporn ;
LU Wenjie ;
CHEN Zexian ;
QIAN Bin ;
ZHANG Tianye ;
WANG Xin ;
CHEN Wei .
Frontiers of Computer Science, 2022, 16 (02)
[47]   Spatio-temporal Characteristics of Atmospheric Pollution and Cause Analysis of Haze Events in Sichuan Basin, China [J].
Wang Xingjie ;
Guo Ke ;
Liang Yuan ;
Zhang Tingbin ;
Wang Guxi .
CHINESE GEOGRAPHICAL SCIENCE, 2021, 31 (03) :539-557
[48]   Effects of air pollution in Spatio-temporal modeling of asthma-prone areas using a machine learning model [J].
Razavi-Termeh, Seyed Vahid ;
Sadeghi-Niaraki, Abolghasem ;
Choi, Soo-Mi .
ENVIRONMENTAL RESEARCH, 2021, 200
[49]   A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution [J].
Akbari, Mohammad ;
Samadzadegan, Farhad ;
Weibel, Robert .
JOURNAL OF GEOGRAPHICAL SYSTEMS, 2015, 17 (03) :249-274
[50]   Air pollution in Germany: Spatio-temporal variations and their driving factors based on continuous data from 2008 to 2018 [J].
Liu, Xiansheng ;
Hadiatullah, Hadiatullah ;
Tai, Pengfei ;
Xu, Yanling ;
Zhang, Xun ;
Schnelle-Kreis, Juergen ;
Schloter-Hai, Brigitte ;
Zimmermann, Ralf .
ENVIRONMENTAL POLLUTION, 2021, 276