On the distribution of rank and crank statistics for integer partitions

被引:0
作者
Nian Hong Zhou
机构
[1] East China Normal University,School of Mathematical Sciences
来源
Research in Number Theory | 2019年 / 5卷
关键词
Asymptotics; Partitions; Crank; Rank; Primary: 11P82; Secondary: 05A16; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a positive integer and m be an integer. Garvan’s k-rank Nk(n,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_k(n,m)$$\end{document} is the number of partitions of n into at least (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document} successive Durfee squares with k-rank equal to m. In this paper we give some asymptotics for Nk(n,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_k(n,m)$$\end{document} with |m|≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|m|\ge \sqrt{n}$$\end{document} as n→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty .$$\end{document} As a corollary, we give a more complete answer for the Dyson’s crank distribution conjecture. We also establish some asymptotic formulas for finite differences of Nk(n,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_k(n,m)$$\end{document} with respect to m with m≫nlogn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\gg \sqrt{n}\log n.$$\end{document}
引用
收藏
相关论文
共 23 条
  • [1] Dyson FJ(1944)Some guesses in the theory of partitions Eureka 8 10-15
  • [2] Andrews GE(1988)Dyson’s crank of a partition Bull. Am. Math. Soc. (N.S.) 18 167-171
  • [3] Garvan FG(1988)New combinatorial interpretations of Ramanujan’s partition congruences mod Trans. Am. Math. Soc. 305 47-77
  • [4] Garvan FG(1989) and J. Comb. Theory A 51 169-180
  • [5] Dyson FJ(2014)Mappings and symmetries of partitions J. Math. Anal. Appl. 409 729-741
  • [6] Mao R(2013)Asymptotic inequalities for Commun. Number Theory Phys. 7 497-513
  • [7] Bringmann K(2015)-ranks and their cumulation functions Discrete Math. 338 180-189
  • [8] Manschot J(2016)Asymptotic formulas for coefficients of inverse theta functions Trans. Am. Math. Soc. 368 3141-3155
  • [9] Kim B(1994)Asymptotics for Manuscr. Math. 84 343-359
  • [10] Kim E(2015)-expansions involving partial theta functions Acta Arith. 168 83-100