Some Properties of the Idempotent Graph of a Ring

被引:0
|
作者
H. R. Dorbidi
R. Manaviyat
S. Mirvakili
机构
[1] University of Jiroft,Department of Basic Sciences
[2] Payame Noor University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2016年 / 13卷
关键词
Idempotents; idempotent graphs; regularity of graphs; diameter of graphs; 05C15; 05C69; 17C27;
D O I
暂无
中图分类号
学科分类号
摘要
The idempotent graph of a ring R, denoted by I(R), is a graph whose vertices are all nontrivial idempotents of R and two distinct vertices x and y are adjacent if and only if xy = yx = 0. In this paper, we show that diam(I(Mn(D)))=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(I(M_n(D))) = 4}$$\end{document}, for all natural number n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 4}$$\end{document} and diam(I(M3(D)))=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(I(M_3(D))) = 5}$$\end{document}, where D is a division ring. We also provide some classes of rings whose idempotent graphs are connected. Moreover, the regularity, clique number and chromatic number of idempotent graphs are studied.
引用
收藏
页码:1419 / 1427
页数:8
相关论文
共 50 条
  • [41] Triangular idempotent matrices over a general ring
    Wright, Stephen E.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (09): : 1717 - 1731
  • [42] SOME PROPERTIES OF BASES INTERSECTION GRAPH
    Ahmed, Iram Tahleel Jaleel
    Jogdand, Suryakant M.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2023, 21 (02) : 113 - 120
  • [43] On some chromatic properties of Jahangir graph
    Bhatti, Akhlaq Ahmad
    ARS COMBINATORIA, 2007, 84 : 269 - 279
  • [44] SOME PROPERTIES OF VAGUE GRAPH STRUCTURES
    Taheri, M.
    Talebi, Y.
    Rashmanlou, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (03): : 1095 - 1106
  • [45] Some Properties of Derived Graph Algebra
    Manyuen, C.
    Jampachon, P.
    Poomsa-ard, T.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (05) : 657 - 672
  • [46] The Secrecy Graph and Some of its Properties
    Haenggi, Martin
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 539 - 543
  • [47] Some graph products and their expansion properties
    Brown, Andrew
    Shokrollahi, Amin
    2006 IEEE INFORMATION THEORY WORKSHOP, 2006, : 170 - +
  • [48] SOME RESULTS ON ELUSIVE GRAPH PROPERTIES
    TRIESCH, E
    SIAM JOURNAL ON COMPUTING, 1994, 23 (02) : 247 - 254
  • [49] On the recognition complexity of some graph properties
    Triesch, E
    COMBINATORICA, 1996, 16 (02) : 259 - 268
  • [50] On some combinatorial properties of the star graph
    Imani, N
    Sarbazi-Azad, H
    Akl, SG
    8TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND NETWORKS, PROCEEDINGS, 2005, : 58 - 63