共 50 条
Nanoindentation of LaCrO3 thin films
被引:0
|作者:
Anthony Mario Coratolo
Nina Orlovskaya
M. Lugovy
V. Slyunyayev
S. Dub
Christopher Johnson
Randall Gemmen
机构:
[1] Drexel University,Department of Materials Science and Engineering
[2] Institute for Problems of Materials Science,Department of Energy
[3] Institute of Superhard Materials,undefined
[4] National Energy Technology Laboratory,undefined
来源:
Journal of Materials Science
|
2006年
/
41卷
关键词:
Phase Transition;
Stainless Steel;
Film Thickness;
Perovskite;
Control Mode;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Nanoindentation of LaCrO3 thin films deposited by radio-frequency magnetron sputtering onto stainless steel substrates was performed using an XP Nanoindenter. The “as-deposited” film was amorphous but transformed to an orthorhombic LaCrO3 perovskite structure after annealing at 1073 K for 1 h. The film thickness in the “as-deposited” state was 800 nm. Single loading/unloadings were performed in the displacement control mode on the crystalline film using different maximum displacements (50, 200, 400, and 800 nm). Therefore, the integral response of the film−substrate system was probed at different distances from the substrate. Nanoindentation experiments on LaCrO3 perovskite films revealed sharp “pop-in” events at certain loads. Such “pop-ins”, are most likely caused by the orthorhombic-to-rhombohedral phase transition which is known to occur in a LaCrO3 perovskite structure under pressure. However, such discontinuities have never been observed upon indentation of the amorphous “as-deposited” La-Cr-O thin films, and the pressure found to be typical of this transition in the LaCrO3 thin films is higher than previous bulk LaCrO3 sample studies. Mechanical characteristics of the films, such as hardness and Young’s modulus, were also measured.
引用
收藏
页码:3105 / 3111
页数:6
相关论文