We prove the asymptotic stability for weak solutions to the 3-D Navier-Stokes equations in the class \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nabla u \in L^{1}(0, \infty; \dot{B}^{0}_{\infty,\infty}({\mathbb{R}}^{3})) \cap LLogL(0, \infty; \dot{B}^{0}_{\infty,\infty}({\mathbb{R}}^{3}))$$\end{document} with arbitrary initial and external perturbations. This solves a problem due to Yong Zhou (Proc. Roy. Soc. Edinburgh, 136A (2006), 1099-1109).