The synchronization between two discrete-time chaotic systems using active robust model predictive control

被引:0
作者
Zhang Longge
Liu Xiangjie
机构
[1] North China Electric Power University,Department of Mathematics and Physics
[2] North China Electric Power University,Department of Automation
来源
Nonlinear Dynamics | 2013年 / 74卷
关键词
Discrete-time; Chaotic system; Model predictive control;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the synchronization of two discrete-time chaotic systems. A novel active robust model predictive strategy is proposed to guarantee the synchronization of two discrete-time systems in the presence of model uncertainty. The proposed approach reduces the synchronization to a convex optimization involving linear matrix inequalities. The numerical simulations illustrate the effectiveness of the proposed method.
引用
收藏
页码:905 / 910
页数:5
相关论文
共 63 条
[1]  
Pecora L.M.(1990)Synchronization in chaotic system Phys. Rev. Lett. 64 821-824
[2]  
Carroll T.L.(1990)Controlling chaos Phys. Rev. Lett. 64 1196-1199
[3]  
Ott E.(2001)Synchronization of Rossler and Chen chaotic dynamical systems using active control Phys. Lett. A 278 191-197
[4]  
Grebogi C.(2004)Adaptive feedback synchronization of Lü system Chaos Solitons Fractals 22 221-227
[5]  
Yorke J.A.(2002)The feedback synchronization of a unified chaotic system Acta Phys. Sin. 51 1497-1501
[6]  
Agiza H.N.(2004)Adaptive feedback synchronization of a unified chaotic system Phys. Lett. A 329 327-333
[7]  
Yassen M.T.(2001)Adaptive synchronization of uncertain chaotic systems via backstepping design Chaos Solitons Fractals 12 1199-1206
[8]  
Han X.(2010)Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances IEEE Trans. Fuzzy Syst. 18 674-685
[9]  
Lu J.A.(2010)Adaptive tracking for periodically time-varying and nonlinearly parameterized systems using multilayer neural networks IEEE Trans. Neural Netw. 21 345-351
[10]  
Wu X.(1996)An adaptive approach to the control and synchronization of continuous-time chaotic systems Int. J. Bifurc. Chaos 6 557-568