An Orthonormal System of Modified Spherical Harmonics

被引:0
|
作者
Heinz Leutwiler
机构
[1] University of Erlangen-Nuremberg,Mathematical Institute
来源
Complex Analysis and Operator Theory | 2017年 / 11卷
关键词
Spherical harmonics; Generalized axially symmetric potentials; Generalized function theory; Laplace–Beltrami operator; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
The motivation for the theory of modified spherical harmonics is the desire to find a class of real functions on the half-sphere S+=(x,y,t):x2+y2+t2=1,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}=\left\{ (x,y,t): x^2 + y^2 + t^2 =1,\right. \left. t > 0 \right\} $$\end{document} in R3={(x,y,t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3 = \{(x,y,t)\}$$\end{document} which is naturally adapted to S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document} in the sense that it behaves like the classical spherical harmonics on the full unit sphere. Such a system is at hand if we replace the Laplace equation Δh=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta h =0$$\end{document} by the equation tΔv+∂v∂t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\Delta v+\frac{\partial v}{\partial t}=0$$\end{document} and consider the restrictions of the polynomial solutions v=v(x,y,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=v(x,y,t)$$\end{document} to the half-sphere S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document}. Elements of this class of functions are called “modified spherical harmonics”. In order to get similar results as in case of the classical spherical harmonics one has however to replace the Euclidean scalar product on the unit sphere in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} by a non-Euclidean one defined on S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document}. All this has already been worked out in an earlier paper entitled “Modified Spherical Harmonics”. In the present paper we deduct an explicit orthonormal system of modified spherical harmonics. Such a system was missing.
引用
收藏
页码:1241 / 1251
页数:10
相关论文
共 50 条
  • [41] From Spherical Harmonics to Gaussian Beampatterns
    Parker, Kevin J.
    Alonso, Miguel A.
    ACOUSTICS, 2025, 7 (01):
  • [42] ENCODING CORTICAL SURFACE BY SPHERICAL HARMONICS
    Chung, Moo K.
    Hartley, Richard
    Dalton, Kim M.
    Davidson, Richard J.
    STATISTICA SINICA, 2008, 18 (04) : 1269 - 1291
  • [43] Using Spherical Harmonics in the Galactocentric Coordinate System to Study the Kinematics of Globular Star Clusters
    A. S. Tsvetkov
    F. A. Amosov
    Astronomy Letters, 2020, 46 : 509 - 517
  • [44] Using Spherical Harmonics in the Galactocentric Coordinate System to Study the Kinematics of Globular Star Clusters
    Tsvetkov, A. S.
    Amosov, F. A.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2020, 46 (08): : 509 - 517
  • [45] Spherical harmonics method for computing the image stress due to a spherical void
    Wang, Yifan
    Zhang, Xiaohan
    Cai, Wei
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2019, 126 : 151 - 167
  • [46] On Positive Values of Spherical Harmonics and Trigonometric Polynomials
    V. A. Yudin
    Mathematical Notes, 2004, 75 : 447 - 450
  • [47] Angular adaptivity with spherical harmonics for Boltzmann transport
    Dargaville, S.
    Buchan, A. G.
    Smedley-Stevenson, R. P.
    Smith, P. N.
    Pain, C. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 397
  • [48] Noise-resistant fitting for spherical harmonics
    Lam, PM
    Leung, CS
    Wong, TT
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (02) : 254 - 265
  • [49] Source distance determination based on the spherical harmonics
    Koutny, Adam
    Jiricek, Ondrej
    Thomas, Jean-Hugh
    Brothanek, Marek
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 85 : 993 - 1004
  • [50] ORTHOGONAL BASES FOR SPACES OF COMPLEX SPHERICAL HARMONICS
    Menegatto, V. A.
    Oliveira, C. P.
    JOURNAL OF APPLIED ANALYSIS, 2005, 11 (01) : 113 - 132