An Orthonormal System of Modified Spherical Harmonics

被引:0
|
作者
Heinz Leutwiler
机构
[1] University of Erlangen-Nuremberg,Mathematical Institute
来源
Complex Analysis and Operator Theory | 2017年 / 11卷
关键词
Spherical harmonics; Generalized axially symmetric potentials; Generalized function theory; Laplace–Beltrami operator; 30G35;
D O I
暂无
中图分类号
学科分类号
摘要
The motivation for the theory of modified spherical harmonics is the desire to find a class of real functions on the half-sphere S+=(x,y,t):x2+y2+t2=1,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}=\left\{ (x,y,t): x^2 + y^2 + t^2 =1,\right. \left. t > 0 \right\} $$\end{document} in R3={(x,y,t)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3 = \{(x,y,t)\}$$\end{document} which is naturally adapted to S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document} in the sense that it behaves like the classical spherical harmonics on the full unit sphere. Such a system is at hand if we replace the Laplace equation Δh=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta h =0$$\end{document} by the equation tΔv+∂v∂t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\Delta v+\frac{\partial v}{\partial t}=0$$\end{document} and consider the restrictions of the polynomial solutions v=v(x,y,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=v(x,y,t)$$\end{document} to the half-sphere S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document}. Elements of this class of functions are called “modified spherical harmonics”. In order to get similar results as in case of the classical spherical harmonics one has however to replace the Euclidean scalar product on the unit sphere in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} by a non-Euclidean one defined on S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{+}$$\end{document}. All this has already been worked out in an earlier paper entitled “Modified Spherical Harmonics”. In the present paper we deduct an explicit orthonormal system of modified spherical harmonics. Such a system was missing.
引用
收藏
页码:1241 / 1251
页数:10
相关论文
共 50 条
  • [31] An efficient spherical mapping algorithm and its application on spherical harmonics
    WAN ShengHua
    YE TengFei
    LI MaoQing
    ZHANG HongChao
    LI Xin
    ScienceChina(InformationSciences), 2013, 56 (09) : 28 - 37
  • [32] Molecular Simulations using Spherical Harmonics
    蔡文生
    徐佳维
    邵学广
    MAIGRET
    Bernard
    Chinese Journal of Chemistry, 2003, (10) : 1252 - 1255
  • [33] Translation of real solid spherical harmonics
    Fernandez Rico, Jaime
    Lopez, Rafael
    Ema, Ignacio
    Ramirez, Guillermo
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (10) : 1544 - 1548
  • [34] INDUCTIVELY GENERATING THE SPHERICAL-HARMONICS
    FRYANT, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (01) : 268 - 271
  • [35] An efficient spherical mapping algorithm and its application on spherical harmonics
    Wan ShengHua
    Ye TengFei
    Li MaoQing
    Zhang HongChao
    Li Xin
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (09) : 1 - 10
  • [37] Fast and Accurate Spherical Harmonics Products
    Xin, Hanggao
    Zhou, Zhiqian
    An, Di
    Yan, Ling-Qi
    Xu, Kun
    Hu, Shi-Min
    Yau, Shing-Tung
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (06):
  • [38] Calculating spherical harmonics without derivatives
    Weitzman, M.
    Freericks, J. K.
    CONDENSED MATTER PHYSICS, 2018, 21 (03)
  • [39] On the statistical performance of spherical harmonics MUSIC
    Wang, Wenxia
    Yan, Shefeng
    Mao, Linlin
    SIGNAL PROCESSING, 2020, 174
  • [40] Collision Avoidance Using Spherical Harmonics
    Patrick, Steven D.
    Bakolas, Efstathios
    IFAC PAPERSONLINE, 2021, 54 (20): : 777 - 782