Sharp Inequalities Involving (n!)1/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n!)^{1/n}$$\end{document}

被引:0
作者
Chao-Ping Chen
机构
[1] Henan Polytechnic University,School of Mathematics and Informatics
关键词
Gamma function; Bernoulli numbers; inequality; Primary 26D07; Secondary 33B15;
D O I
10.1007/s00009-018-1212-y
中图分类号
学科分类号
摘要
We prove that, for all integers n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, (2πn)1n(n+1)1-1n+a<n!n(n+1)!n+1≤(2πn)1n(n+1)1-1n+b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+a}\right) <\frac{\root n \of {n!}}{\root n+1 \of {(n+1)!}}\le \Big (\sqrt{2\pi n}\Big )^{\frac{1}{n(n+1)}}\left( 1-\frac{1}{n+b}\right) \end{aligned}$$\end{document}and (2πn)1/n1-12n+α<1+1nnn!nn≤(2πn)1/n1-12n+β,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\alpha }\right) <\left( 1+\frac{1}{n}\right) ^{n}\frac{\root n \of {n!}}{n}\le \big (\sqrt{2\pi n}\big )^{1/n}\left( 1-\frac{1}{2n+\beta }\right) , \end{aligned}$$\end{document}with the best possible constants a=12,b=123/4π1/4-1=0.807…,α=136andβ=22-ππ-2=2.947….\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&a=\frac{1}{2},\quad b=\frac{1}{2^{3/4}\pi ^{1/4}-1}=0.807\ldots ,\quad \alpha =\frac{13}{6} \\&\text {and}\quad \beta =\frac{2\sqrt{2}-\sqrt{\pi }}{\sqrt{\pi }-\sqrt{2}}=2.947\ldots . \end{aligned}$$\end{document}
引用
收藏
相关论文
共 22 条
[1]  
Allasia G(1999)On the arithmetic and logarithmic means with applications to Stirling’s formula Atti Sem. Mat. Fis. Univ. Modena 47 441-455
[2]  
Giordano C(1994)On some inequalities involving Rocky Mt. J. Math. 24 867-873
[3]  
Pečarić J(1994)On some inequalities involving Period. Math. Hung. 28 229-233
[4]  
Alzer H(1997) II Math. Comput. 66 373-389
[5]  
Alzer H(2004)On some inequalities for the gamma and psi functions Mediterr. J. Math. 1 433-439
[6]  
Alzer H(1939)Integral representation of some functions related to the gamma function Compos. Math. 7 96-111
[7]  
Berg C(2010)Sur un théorème de M. S. Bernstein relatif J. Math. Anal. Appl. 362 156-166
[8]  
Dubourdieu J(1996) la transformation de Laplace-Stieltjes J. Math. Anal. Appl. 204 389-408
[9]  
Guan K(1920)Multiplicative convexity and its applications Math. Z. 6 314-317
[10]  
van Haeringen H(2006)Completely monotonic and related functions J. Math. Anal. Appl. 324 1458-1461