Additive mappings on C∗-algebras sub-preserving absolute values of products

被引:0
作者
Ali Taghavi
机构
[1] University of Mazandaran,Department of Mathematics, Faculty of Mathematical Sciences
来源
Journal of Inequalities and Applications | / 2012卷
关键词
-algebra; -linear; -antilinear; homomorphism; linear preserver problem; real rank zero;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a C∗-algebra of real rank zero and B be a C∗-algebra with unit I. It is shown that if ϕ:A⟶B is an additive mapping which satisfies |ϕ(A)ϕ(B)|≤ϕ(|AB|) for every A,B∈A+ and ϕ(A)=I for some A∈As with ∥A∥≤1, then the restriction of mapping ϕ to As is a Jordan homomorphism, where As denotes the set of all self-adjoint elements. We will also show that if ϕ is surjective preserving the product and an absolute value, then ϕ is a C-linear or C-antilinear ∗-homomorphism on A.
引用
收藏
相关论文
共 25 条
[1]  
Aupetit B(1994)Spectrum preserving linear mappings in Banach algebras Stud. Math 109 91-100
[2]  
du Toit Mouton H(1993)Commuting traces of biadditive mappings, commutativity-preserving, mappings and Lie mappings Trans. Am. Math. Soc 335 525-546
[3]  
Brešar M(1992)Linear preservers on powers of matrices Linear Algebra Appl 162-164 615-626
[4]  
Chan GH(1987)Linear maps preserving commutativity Linear Algebra Appl 87 227-241
[5]  
Lim MH(1986)Spectrum-preserving linear maps J. Funct. Anal 66 255-261
[6]  
Choi MD(2002)Quentially independent effects Proc. Am. Math. Soc 130 1125-1130
[7]  
Jafarian AA(1992)Linear preserver problems: a brief introduction and some special techniques Linear Algebra Appl 162-164 217-235
[8]  
Radjavi H(1996)Two characterisations of additive *-automorphisms of Bull. Aust. Math. Soc 53 391-400
[9]  
Jafarian AA(2006)Multiplicative Jordan triple isomorphisms on the selfadjoint elements of von Neuman algebras Linear Algebra Appl 419 586-600
[10]  
Sourour AR(1986)On operators preserving commutativity J. Funct. Anal 66 105-122