Epidural Spinal Cord Stimulation Promotes Motor Functional Recovery by Enhancing Oligodendrocyte Survival and Differentiation and by Protecting Myelin after Spinal Cord Injury in Rats

被引:0
|
作者
Gang Li
Zhong-Kai Fan
Guang-Fei Gu
Zhi-Qiang Jia
Qiang-Qiang Zhang
Jun-Yu Dai
Shi-Sheng He
机构
[1] Tongji University School of Medicine,Department of Orthopedics, Shanghai Tenth People’s Hospital
[2] Tongji University School of Medicine,Spinal Pain Research Institute
[3] Jinzhou Medical University,Department of Orthopaedics, The First Affiliated Hospital
[4] Henan University of Science and Technology,Department of Spinal Surgery, The Second Affiliated Hospital
来源
Neuroscience Bulletin | 2020年 / 36卷
关键词
Spinal cord injury; Epidural spinal cord stimulation; Oligodendrocyte; Differentiation; Remyelination;
D O I
暂无
中图分类号
学科分类号
摘要
Epidural spinal cord stimulation (ESCS) markedly improves motor and sensory function after spinal cord injury (SCI), but the underlying mechanisms are unclear. Here, we investigated whether ESCS affects oligodendrocyte differentiation and its cellular and molecular mechanisms in rats with SCI. ESCS improved hindlimb motor function at 7 days, 14 days, 21 days, and 28 days after SCI. ESCS also significantly increased the myelinated area at 28 days, and reduced the number of apoptotic cells in the spinal white matter at 7 days. SCI decreased the expression of 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase, an oligodendrocyte marker) at 7 days and that of myelin basic protein at 28 days. ESCS significantly upregulated these markers and increased the percentage of Sox2/CNPase/DAPI-positive cells (newly differentiated oligodendrocytes) at 7 days. Recombinant human bone morphogenetic protein 4 (rhBMP4) markedly downregulated these factors after ESCS. Furthermore, ESCS significantly decreased BMP4 and p-Smad1/5/9 expression after SCI, and rhBMP4 reduced this effect of ESCS. These findings indicate that ESCS enhances the survival and differentiation of oligodendrocytes, protects myelin, and promotes motor functional recovery by inhibiting the BMP4-Smad1/5/9 signaling pathway after SCI.
引用
收藏
页码:372 / 384
页数:12
相关论文
共 50 条
  • [41] Valproic acid reduces autophagy and promotes functional recovery after spinal cord injury in rats
    Hai-Hu Hao
    Li Wang
    Zhi-Jian Guo
    Lang Bai
    Rui-Ping Zhang
    Wei-Bing Shuang
    Yi-Jia Jia
    Jie Wang
    Xiao-Yu Li
    Qiang Liu
    Neuroscience Bulletin, 2013, 29 (04) : 484 - 492
  • [42] A Scoping Review of Epidural Spinal Cord Stimulation for Improving Motor and Voiding Function Following Spinal Cord Injury
    D'hondt, Nina
    Marcial, Karmi Margaret
    Mittal, Nimish
    Costanzi, Matteo
    Hoydonckx, Yasmine
    Kumar, Pranab
    Englesakis, Marina F.
    Burns, Anthony
    Bhatia, Anuj
    TOPICS IN SPINAL CORD INJURY REHABILITATION, 2023, 29 (02) : 12 - 30
  • [43] Effects of Epidural Spinal Cord Stimulation and Treadmill Training on Locomotion Function and Ultrastructure of Spinal Cord Anterior Horn after Moderate Spinal Cord Injury in Rats
    WANG Yizhao HUANG Xiaolin XU Jiang XU Tao FANG Zhengyu XU Qi TU Xikai YANG Peipei Department of Rehabilitation MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina Key Laboratory of Image Processing and Intelligent ControlDepartment of Control Science and TechnologyHuazhong University of Science and TechnologyWuhan China
    中国康复医学杂志, 2009, 24 (06) : 485 - 488
  • [44] Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury
    Samejima, Soshi
    Henderson, Richard
    Pradarelli, Jared
    Mondello, Sarah E.
    Moritz, Chet T.
    EXPERIMENTAL NEUROLOGY, 2022, 357
  • [45] Acute baclofen administration promotes functional recovery after spinal cord injury
    Pinho, Andreia G.
    Monteiro, Susana
    Liberato, Valentina
    Santos, Diogo J.
    Campos, Jonas
    Cibra, Jorge R.
    Silva, Nuno A.
    de Sousa, Nidia
    Barreiro-Iglesias, Anton
    Salgado, Antonio J.
    SPINE JOURNAL, 2023, 23 (03) : 379 - 391
  • [46] Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury
    Chen, Ningning
    Zhou, Pengxiang
    Liu, Xizhe
    Li, Jiachun
    Wan, Yong
    Liu, Shaoyu
    Wei, Fuxin
    FASEB JOURNAL, 2020, 34 (05) : 6984 - 6998
  • [47] Oscillating field stimulation promotes axon regeneration and locomotor recovery after spinal cord injury
    Wang, Yi-Xin
    Bai, Jin-Zhu
    Lyu, Zhen
    Zhang, Guang-Hao
    Huo, Xiao-Lin
    NEURAL REGENERATION RESEARCH, 2022, 17 (06) : 1318 - 1323
  • [48] Biomimetic hydrogels direct spinal progenitor cell differentiation and promote functional recovery after spinal cord injury
    Geissler, Sydney A.
    Sabin, Alexandra L.
    Besser, Rachel R.
    Gooden, Olivia M.
    Shirk, Bryce D.
    Nguyen, Quan M.
    Khaing, Zin Z.
    Schmidt, Christine E.
    JOURNAL OF NEURAL ENGINEERING, 2018, 15 (02)
  • [49] Epidural spinal cord stimulation in the management of spasms in spinal cord injury: A prospective study
    Barolat, G
    SinghSahni, K
    Staas, WE
    Shatin, D
    Ketcik, B
    Allen, K
    STEREOTACTIC AND FUNCTIONAL NEUROSURGERY, 1995, 64 (03) : 153 - 164
  • [50] Neuronal activity-dependent myelin repair promotes motor function recovery after contusion spinal cord injury
    Luo, Meiling
    Yin, Ying
    Li, Duanfang
    Tang, Weiwei
    Liu, Yuan
    Pan, Lu
    Yu, Lehua
    Tan, Botao
    BRAIN RESEARCH BULLETIN, 2021, 166 : 73 - 81