Epidural Spinal Cord Stimulation Promotes Motor Functional Recovery by Enhancing Oligodendrocyte Survival and Differentiation and by Protecting Myelin after Spinal Cord Injury in Rats

被引:0
|
作者
Gang Li
Zhong-Kai Fan
Guang-Fei Gu
Zhi-Qiang Jia
Qiang-Qiang Zhang
Jun-Yu Dai
Shi-Sheng He
机构
[1] Tongji University School of Medicine,Department of Orthopedics, Shanghai Tenth People’s Hospital
[2] Tongji University School of Medicine,Spinal Pain Research Institute
[3] Jinzhou Medical University,Department of Orthopaedics, The First Affiliated Hospital
[4] Henan University of Science and Technology,Department of Spinal Surgery, The Second Affiliated Hospital
来源
Neuroscience Bulletin | 2020年 / 36卷
关键词
Spinal cord injury; Epidural spinal cord stimulation; Oligodendrocyte; Differentiation; Remyelination;
D O I
暂无
中图分类号
学科分类号
摘要
Epidural spinal cord stimulation (ESCS) markedly improves motor and sensory function after spinal cord injury (SCI), but the underlying mechanisms are unclear. Here, we investigated whether ESCS affects oligodendrocyte differentiation and its cellular and molecular mechanisms in rats with SCI. ESCS improved hindlimb motor function at 7 days, 14 days, 21 days, and 28 days after SCI. ESCS also significantly increased the myelinated area at 28 days, and reduced the number of apoptotic cells in the spinal white matter at 7 days. SCI decreased the expression of 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase, an oligodendrocyte marker) at 7 days and that of myelin basic protein at 28 days. ESCS significantly upregulated these markers and increased the percentage of Sox2/CNPase/DAPI-positive cells (newly differentiated oligodendrocytes) at 7 days. Recombinant human bone morphogenetic protein 4 (rhBMP4) markedly downregulated these factors after ESCS. Furthermore, ESCS significantly decreased BMP4 and p-Smad1/5/9 expression after SCI, and rhBMP4 reduced this effect of ESCS. These findings indicate that ESCS enhances the survival and differentiation of oligodendrocytes, protects myelin, and promotes motor functional recovery by inhibiting the BMP4-Smad1/5/9 signaling pathway after SCI.
引用
收藏
页码:372 / 384
页数:12
相关论文
共 50 条
  • [31] Transplantation of oligodendrocyte precursor cells improves myelination and promotes functional recovery after spinal cord injury
    Wu, Bo
    Sun, Lei
    Li, Peijia
    Tian, Min
    Luo, Yongzhong
    Ren, Xianjun
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2012, 43 (06): : 794 - 801
  • [32] Epidural electrical stimulation to facilitate locomotor recovery after spinal cord injury
    Audet, Johannie
    Lecomte, Charly G.
    JOURNAL OF NEUROPHYSIOLOGY, 2021, 126 (05) : 1751 - 1755
  • [33] Chondroitinase ABC promotes functional recovery after spinal cord injury
    Bradbury, EJ
    Moon, LDF
    Popat, RJ
    King, VR
    Bennett, GS
    Patel, PN
    Fawcett, JW
    McMahon, SB
    NATURE, 2002, 416 (6881) : 636 - 640
  • [34] Exercise Training Promotes Functional Recovery after Spinal Cord Injury
    Fu, Juanjuan
    Wang, Hongxing
    Deng, Lingxiao
    Li, Jianan
    NEURAL PLASTICITY, 2016, 2016
  • [35] Effect of epidural spinal cord stimulation on female sexual function after spinal cord injury
    Shackleton, Claire
    Samejima, Soshi
    Miller, Tiev
    Sachdeva, Rahul
    Parr, Ann
    Samadani, Uzma
    Netoff, Theoden
    Hocaloski, Shea
    Elliott, Stacy
    Walter, Matthias
    Darrow, David
    Krassioukov, Andrei
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [36] Normalization of Blood Pressure With Spinal Cord Epidural Stimulation After Severe Spinal Cord Injury
    Harkema, Susan J.
    Wang, Siqi
    Angeli, Claudia A.
    Chen, Yangsheng
    Boakye, Maxwell
    Ugiliweneza, Beatrice
    Hirsch, Glenn A.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2018, 12
  • [37] Chondroitinase ABC promotes functional recovery after spinal cord injury
    Elizabeth J. Bradbury
    Lawrence D. F. Moon
    Reena J. Popat
    Von R. King
    Gavin S. Bennett
    Preena N. Patel
    James W. Fawcett
    Stephen B. McMahon
    Nature, 2002, 416 : 636 - 640
  • [38] A flexible electrode array for determining regions of motor function activated by epidural spinal cord stimulation in rats with spinal cord injury
    Mao, Guang-Wei
    Zhang, Jian-Jun
    Su, Hao
    Zhou, Zhi-Jun
    Zhu, Lin-Sen
    Lu, Xiao-Ying
    Wang, Zhi-Gong
    NEURAL REGENERATION RESEARCH, 2022, 17 (03) : 601 - 607
  • [39] A flexible electrode array for determining regions of motor function activated by epidural spinal cord stimulation in rats with spinal cord injury
    Guang-Wei Mao
    Jian-Jun Zhang
    Hao Su
    Zhi-Jun Zhou
    Lin-Sen Zhu
    Xiao-Ying Lü
    Zhi-Gong Wang
    NeuralRegenerationResearch, 2022, 17 (03) : 601 - 607
  • [40] Predictors of volitional motor recovery with epidural stimulation in Individuals with chronic spinal cord injury
    Mesbah, Samineh
    Ball, Tyler
    Angeli, Claudia
    Rejc, Enrico
    Dietz, Nicholas
    Ugiliweneza, Beatrice
    Harkema, Susan
    Boakye, Maxwell
    BRAIN, 2021, 144 (02) : 420 - 433