Master equations and stability of Einstein-Maxwell-scalar black holes

被引:0
作者
Aron Jansen
Andrzej Rostworowski
Mieszko Rutkowski
机构
[1] Urliversitat de Barcelona,Departement de Fisica Quanticai A strofisica, Institut de Ciencies del Cosmos
[2] Jagiellonian University,M. Smoluchowski Institute of Physics
来源
Journal of High Energy Physics | / 2019卷
关键词
AdS-CFT Correspondence; Black Holes; Classical Theories of Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
We derive master equations for linear perturbations in Einstein-Maxwell scalar theory, for any spacetime dimension D and any background with a maximally symmetric n = (D - 2)-dimensional spatial component. This is done by expressing all fluctuations analytically in terms of several master scalars. The resulting master equations are Klein­ Gordon equations, with non-derivative couplings given by a potential matrix of size 3, 2 and 1 for the scalar, vector and tensor sectors respectively. Furthermore, these potential matrices turn out to be symmetric, and positivity of the eigenvalues is sufficient (though not necessary) for linear stability of the background under consideration. In general these equations cannot be fully decoupled, only in specific cases such as Reissner-Nordstrom, where we reproduce the Kodama-Ishibashi master equations. Finally we use this to prove stability in the vector sector of the GMGHS black hole and of Einstein-scalar theories in general.
引用
收藏
相关论文
共 48 条
[1]  
Regge T(1957)undefined Phys. Rev. 108 1063-undefined
[2]  
Wheeler JA(1970)undefined Phys. Rev. Lett. 24 737-undefined
[3]  
Zerilli FJ(1970)undefined Phys. Rev. D 2 2141-undefined
[4]  
Zerilli FJ(1990)undefined Phys. Rev. D 41 403-undefined
[5]  
Mellor F(2003)undefined Frog. Theor. Phys. 110 701-undefined
[6]  
Moss I(2004)undefined Frog. Theor. Phys. 111 29-undefined
[7]  
Kodama H(2010)undefined Frog. Theor. Phys. 124 911-undefined
[8]  
Ishibashi A(2017)undefined Phys. Rev. D 96 124026-undefined
[9]  
Kodama H(1999)undefined Int. J. Theor. Phys. 38 1113-undefined
[10]  
Ishibashi A(2009)undefined JHEP 05 033-undefined