Periodic Motions of the Non-autonomous Oseen–Navier–Stokes Flows Past a Moving Obstacle with Data in Lp-Spaces

被引:0
作者
Thieu Huy Nguyen
Thi Kim Oanh Tran
机构
[1] Hanoi University of Science and Technology (Vien Toan ung dung va Tin hoc,School of Applied Mathematics and Informatics
[2] Dai hoc Bach khoa Hanoi),undefined
来源
Vietnam Journal of Mathematics | 2024年 / 52卷
关键词
Oseen–Navier–Stokes equations; Rotating and translating obstacle; Interpolation spaces; Massera’s principle; Periodic solutions; Stability; 35Q30; 35B10; 76D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the time-periodic mild solutions to the non-autonomous Oseen–Navier–Stokes equations (ONSE). We prove the existence and polynomial stability of such solutions to ONSE in the exterior domain Ω⊂ℝ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\varOmega }}\subset \mathbb {R}^{3}$\end{document} of a rigid body, D=ℝ3∖Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D=\mathbb {R}^{3}\backslash {{\varOmega }}$\end{document}, moving by time periodic motion of given period T, when the data belong to Lp-space and are sufficiently small. Our method is based on the Lp − Lq smoothness of the evolution family corresponding to linearized equations in combination with ergodic theory and fixed-point theorems to obtain the result on existence and stability of T-periodic solutions under the actions of T-periodic external forces.
引用
收藏
页码:219 / 233
页数:14
相关论文
共 45 条
  • [1] Borchers W(1995)On stability of exterior stationary Navier–Stokes flows Acta Math. 174 311-382
  • [2] Miyakawa T(2004)Existence and uniqueness of time-periodic physically reasonable Navier–Stokes flows past a body Arch. Rational Mech. Anal. 172 363-406
  • [3] Galdi GP(2006)Existence of time-periodic solutions to the Navier–Stokes equations around a moving body Pac. J. Math. 223 251-267
  • [4] Sohr H(2022)Navier–stokes flow past a rigid body that moves by time-periodic motion J. Math. Fluid Mech. 24 30-1257
  • [5] Galdi GP(2013)Existence and uniqueness of time-periodic solutions to the Navier–Stokes equations in the whole plane Discrete Contin. Dyn. Syst. 6 1237-498
  • [6] Silvestre AL(2013)On the time-periodic flow of a viscous liquid past a moving cylinder Arch. Rational Mech. Anal. 210 451-1118
  • [7] Galdi GP(2016)A general approach to time periodic incompressible viscous fluid flow problems Arch. Rational Mech. Anal. 220 1095-212
  • [8] Galdi GP(1986)Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system J. Differ. Equ. 61 186-681
  • [9] Galdi GP(1980)The Navier-Stokes equations: On the existence, regularity and decay of solutions Indiana Univ. Math. J. 29 639-26
  • [10] Geissert M(2014)The Oseen–Navier–Stokes flow in the exterior of a rotating obstacle: the non-autonomous case J. Reine Angew. Math. 2014 1-254