The Fermi–Walker Derivative in Minkowski Space E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document}

被引:0
作者
Fatma Karakuş
Yusuf Yayli
机构
[1] Sinop University,Department of Mathematics, Faculty of Arts and Sciences
[2] Ankara University,Department of Mathematics, Faculty of Science
关键词
Fermi–Walker derivative; Fermi–Walker parallelism; Non-rotating frame; Spacelike curve; Timelike curve; Frenet frame; Darboux vector; Primary 53B20; 53B21; 53B50; Secondary 53Z05; 53Z99;
D O I
10.1007/s00006-016-0719-1
中图分类号
学科分类号
摘要
In this study Fermi–Walker derivative, Fermi–Walker parallelism, non-rotating frame, Fermi–Walker terms Darboux vector concepts are given for Minkowski 3-space E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document}. First, we get any spacelike curve with a spacelike or timelike principal normal and any vector field along the curve in Minkowski 3-space E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document}. Fermi–Walker derivative and Fermi–Walker parallelism are analyzed for any spacelike curve with a spacelike or timelike principal normal in Minkowski 3-space E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document} and the necessary conditions to be Fermi–Walker parallel are explained. Then the necessary definitions, concepts and theorems are analyzed about Fermi–Walker derivative for any spacelike curve with a lightlike(null) principal normal. And then, in Minkowski 3-space E13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E_{1}^{3}}$$\end{document} Fermi–Walker derivative is analyzed for any timelike curves.
引用
收藏
页码:1353 / 1368
页数:15
相关论文
共 8 条
[1]  
Balakrishnan R.(2005)Space curves, anholonomy and nonlinearity Pramana J. Phys. 64 607-615
[2]  
Benn I.M.(1989)Wave mechanics and inertial guidance Phys. Rev. D 39 1594-1601
[3]  
Tucker R.W.I.(2005)Spacelike normal curves in Minkowski space Turk. J. Math. 29 53-63
[4]  
İlarslan K.(2004)Timelike and null normal curves in Minkowski space Indian J. Pure Appl. Math. 35 881-888
[5]  
İlarslan K.(1999)Generalized Fermi–Walker transport Lib. Math. 19 65-69
[6]  
Nesovic E.(1932)Relative co-ordinates Proc. R. Soc. Edinb. 52 345-353
[7]  
Pripoae G.T.(undefined)undefined undefined undefined undefined-undefined
[8]  
Walker A.G.(undefined)undefined undefined undefined undefined-undefined