Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime

被引:0
|
作者
Christian Brennecke
Benjamin Schlein
Severin Schraven
机构
[1] Harvard University,Department of Mathematics
[2] University of Zurich,Institute of Mathematics
来源
Mathematical Physics, Analysis and Geometry | 2022年 / 25卷
关键词
Bose-Einstein Condensation; Interacting Bosons; Gross-Pitaevskii Regime;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Bose gas consisting of N particles in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}, trapped by an external field and interacting through a two-body potential with scattering length of order N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{-1}$$\end{document}. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364), removing the smallness assumption on the size of the scattering length.
引用
收藏
相关论文
共 50 条