Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime

被引:0
|
作者
Christian Brennecke
Benjamin Schlein
Severin Schraven
机构
[1] Harvard University,Department of Mathematics
[2] University of Zurich,Institute of Mathematics
来源
Mathematical Physics, Analysis and Geometry | 2022年 / 25卷
关键词
Bose-Einstein Condensation; Interacting Bosons; Gross-Pitaevskii Regime;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Bose gas consisting of N particles in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}, trapped by an external field and interacting through a two-body potential with scattering length of order N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{-1}$$\end{document}. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364), removing the smallness assumption on the size of the scattering length.
引用
收藏
相关论文
共 50 条
  • [11] Bogoliubov Theory for Trapped Bosons in the Gross–Pitaevskii Regime
    Christian Brennecke
    Benjamin Schlein
    Severin Schraven
    Annales Henri Poincaré, 2022, 23 : 1583 - 1658
  • [12] A Short Proof of Bose-Einstein Condensation in the Gross-Pitaevskii Regime and Beyond
    Brennecke, Christian
    Brooks, Morris
    Caraci, Cristina
    Oldenburg, Jakob
    ANNALES HENRI POINCARE, 2024, : 1353 - 1373
  • [13] Bogoliubov Theory for Trapped Bosons in the Gross-Pitaevskii Regime
    Brennecke, Christian
    Schlein, Benjamin
    Schraven, Severin
    ANNALES HENRI POINCARE, 2022, 23 (05): : 1583 - 1658
  • [14] The low energy spectrum of trapped bosons in the Gross-Pitaevskii regime
    Brennecke, Christian
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (05)
  • [15] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [16] Bogoliubov excitation spectrum of trapped Bose gases in the Gross-Pitaevskii regime
    Nam, Phan Thanh
    Triay, Arnaud
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 176 : 18 - 101
  • [18] Localization of Relative Entropy in Bose-Einstein Condensation of Trapped Interacting Bosons
    Morato, Laura M.
    Ugolini, Stefania
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VII, 2013, 67 : 197 - 210
  • [19] Bose-Einstein condensation in trapped bosons: A variational Monte Carlo analysis
    DuBois, JL
    Glyde, HR
    PHYSICAL REVIEW A, 2001, 63 (02):
  • [20] Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation
    Adhikari, SK
    Muruganandam, P
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (12) : 2831 - 2843