Bose–Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross–Pitaevskii Regime

被引:0
|
作者
Christian Brennecke
Benjamin Schlein
Severin Schraven
机构
[1] Harvard University,Department of Mathematics
[2] University of Zurich,Institute of Mathematics
来源
Mathematical Physics, Analysis and Geometry | 2022年 / 25卷
关键词
Bose-Einstein Condensation; Interacting Bosons; Gross-Pitaevskii Regime;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a Bose gas consisting of N particles in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}, trapped by an external field and interacting through a two-body potential with scattering length of order N-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{-1}$$\end{document}. We prove that low energy states exhibit complete Bose–Einstein condensation with optimal rate, generalizing previous work in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018; 376:1311–1395, 2020), restricted to translation invariant systems. This extends recent results in Nam et al. (Preprint, 2001. arXiv:2001.04364), removing the smallness assumption on the size of the scattering length.
引用
收藏
相关论文
共 50 条
  • [1] Bose-Einstein Condensation with Optimal Rate for Trapped Bosons in the Gross-Pitaevskii Regime
    Brennecke, Christian
    Schlein, Benjamin
    Schraven, Severin
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (02)
  • [2] Optimal Rate for Bose–Einstein Condensation in the Gross–Pitaevskii Regime
    Chiara Boccato
    Christian Brennecke
    Serena Cenatiempo
    Benjamin Schlein
    Communications in Mathematical Physics, 2020, 376 : 1311 - 1395
  • [3] OPTIMAL RATE OF CONDENSATION FOR TRAPPED BOSONS IN THE GROSS-PITAEVSKII REGIME
    Nam, Phan Thanh
    Napiorkowski, Marcin
    Ricaud, Julien
    Triay, Arnaud
    ANALYSIS & PDE, 2022, 15 (06): : 1585 - 1616
  • [4] Bose–Einstein Condensation for Two Dimensional Bosons in the Gross–Pitaevskii Regime
    Cristina Caraci
    Serena Cenatiempo
    Benjamin Schlein
    Journal of Statistical Physics, 2021, 183
  • [5] Optimal Rate for Bose-Einstein Condensation in the Gross-Pitaevskii Regime
    Boccato, Chiara
    Brennecke, Christian
    Cenatiempo, Serena
    Schlein, Benjamin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 1311 - 1395
  • [6] Bose-Einstein Condensation for Two Dimensional Bosons in the Gross-Pitaevskii Regime
    Caraci, Cristina
    Cenatiempo, Serena
    Schlein, Benjamin
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (03)
  • [7] Bose–Einstein Condensation Beyond the Gross–Pitaevskii Regime
    Arka Adhikari
    Christian Brennecke
    Benjamin Schlein
    Annales Henri Poincaré, 2021, 22 : 1163 - 1233
  • [8] Complete Bose–Einstein Condensation in the Gross–Pitaevskii Regime
    Chiara Boccato
    Christian Brennecke
    Serena Cenatiempo
    Benjamin Schlein
    Communications in Mathematical Physics, 2018, 359 : 975 - 1026
  • [9] Bose-Einstein Condensation Beyond the Gross-Pitaevskii Regime
    Adhikari, Arka
    Brennecke, Christian
    Schlein, Benjamin
    ANNALES HENRI POINCARE, 2021, 22 (04): : 1163 - 1233
  • [10] Complete Bose-Einstein Condensation in the Gross-Pitaevskii Regime
    Boccato, Chiara
    Brennecke, Christian
    Cenatiempo, Serena
    Schlein, Benjamin
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (03) : 975 - 1026