We study blow-ups in generalized Kähler geometry. The natural candidates for submanifolds to be blown-up are those which are generalized Poisson submanifolds for one of the two generalized complex structures and can be blown up in a generalized complex manner. We show that the bi-Hermitian structure underlying the generalized Kähler pair lifts to a degenerate bi-Hermitian structure on this blow-up. Then, using a deformation procedure based on potentials in Kähler geometry, we identify two concrete situations in which one can deform the degenerate structure on the blow-up into a non-degenerate one. We end with a study of generalized Kähler Lie groups and give a concrete example on (S1)n×(S3)m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(S^1)^n \times (S^3)^m}$$\end{document}, for n + m even.
机构:
Univ Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
Univ Waterloo, Dept Math, Waterloo, ON N2L 3G1, CanadaUniv Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
Bailey, M. A.
Cavalcanti, G. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Dept Math, NL-3584 CD Utrecht, NetherlandsUniv Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
Cavalcanti, G. R.
Duran, J. L. van der Leer
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Dept Math, NL-3584 CD Utrecht, Netherlands
Univ Toronto, Dept Math, Toronto, ON M55 2E4, CanadaUniv Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands