Blow-Ups in Generalized Kähler Geometry

被引:0
|
作者
J. L. van der Leer Durán
机构
[1] University of Toronto,
[2] Utrecht University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study blow-ups in generalized Kähler geometry. The natural candidates for submanifolds to be blown-up are those which are generalized Poisson submanifolds for one of the two generalized complex structures and can be blown up in a generalized complex manner. We show that the bi-Hermitian structure underlying the generalized Kähler pair lifts to a degenerate bi-Hermitian structure on this blow-up. Then, using a deformation procedure based on potentials in Kähler geometry, we identify two concrete situations in which one can deform the degenerate structure on the blow-up into a non-degenerate one. We end with a study of generalized Kähler Lie groups and give a concrete example on (S1)n×(S3)m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(S^1)^n \times (S^3)^m}$$\end{document}, for n +  m even.
引用
收藏
页码:1133 / 1156
页数:23
相关论文
共 50 条
  • [1] Blow-Ups in Generalized Kahler Geometry
    Duran, J. L. van der Leer
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (03) : 1133 - 1156
  • [2] BLOW-UPS IN GENERALIZED COMPLEX GEOMETRY
    Bailey, M. A.
    Cavalcanti, G. R.
    Duran, J. L. van der Leer
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 2109 - 2131
  • [3] The differential geometry of blow-ups
    D. V. Bykov
    Theoretical and Mathematical Physics, 2015, 185 : 1636 - 1648
  • [4] THE DIFFERENTIAL GEOMETRY OF BLOW-UPS
    Bykov, D. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 185 (02) : 1636 - 1648
  • [5] BOTERO BLOW-UPS
    REICHARDT, J
    ART INTERNATIONAL, 1983, 26 (03): : 18 - &
  • [6] Permissible Blow-Ups
    Cossart, Vincent
    Jannsen, Uwe
    Saito, Shuji
    DESINGULARIZATION: INVARIANTS AND STRATEGY: APPLICATION TO DIMENSION 2, 2020, 2270 : 37 - 48
  • [7] Algebraic K-theory and descent for blow-ups
    Moritz Kerz
    Florian Strunk
    Georg Tamme
    Inventiones mathematicae, 2018, 211 : 523 - 577
  • [8] Generalized Kähler Geometry
    Marco Gualtieri
    Communications in Mathematical Physics, 2014, 331 : 297 - 331
  • [9] Algebraic K-theory and descent for blow-ups
    Kerz, Moritz
    Strunk, Florian
    Tamme, Georg
    INVENTIONES MATHEMATICAE, 2018, 211 (02) : 523 - 577
  • [10] Blow-ups of canonical singularities
    Prokhorov, YG
    ALGEBRA, 2000, : 301 - 317