Colourings of the cartesian product of graphs and multiplicative Sidon sets

被引:0
|
作者
Attila Pór
David R. Wood
机构
[1] Western Kentucky University,Department of Mathematics
[2] The University of Melbourne,QEII Research Fellow Department of Mathematics and Statistics
来源
Combinatorica | 2009年 / 29卷
关键词
05C15; 11N99;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a family of connected bipartite graphs, each with at least three vertices. A proper vertex colouring of a graph G with no bichromatic subgraph in F is F-free. The F-free chromatic number χ(G,F) of a graph G is the minimum number of colours in an F-free colouring of G. For appropriate choices of F, several well-known types of colourings fit into this framework, including acyclic colourings, star colourings, and distance-2 colourings. This paper studies F-free colourings of the cartesian product of graphs.
引用
收藏
页码:449 / 466
页数:17
相关论文
共 50 条
  • [1] COLOURINGS OF THE CARTESIAN PRODUCT OF GRAPHS AND MULTIPLICATIVE SIDON SETS
    Por, Attila
    Wood, David R.
    COMBINATORICA, 2009, 29 (04) : 449 - 466
  • [2] Local colourings of Cartesian product graphs
    Klavzar, Sandi
    Shao, Zehui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (04) : 694 - 699
  • [3] Additive and multiplicative Sidon sets
    Imre Z. Ruzsa
    Acta Mathematica Hungarica, 2006, 112 : 345 - 354
  • [4] On infinite multiplicative Sidon sets
    Pach, Peter Pal
    Sandor, Csaba
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 76 : 37 - 52
  • [5] Additive and multiplicative Sidon sets
    Ruzsa, I. Z.
    ACTA MATHEMATICA HUNGARICA, 2006, 112 (04) : 345 - 354
  • [6] Generalized multiplicative Sidon sets
    Pach, Peter Pal
    JOURNAL OF NUMBER THEORY, 2015, 157 : 507 - 529
  • [7] Additive and multiplicative Sidon sets
    O. Roche-Newton
    A. Warren
    Acta Mathematica Hungarica, 2021, 165 : 326 - 336
  • [8] ADDITIVE AND MULTIPLICATIVE SIDON SETS
    Roche-newton, O.
    Warren, A.
    ACTA MATHEMATICA HUNGARICA, 2021, 165 (02) : 326 - 336
  • [9] Alliance free sets in Cartesian product graphs
    Yero, Ismael G.
    Rodriguez-Velazquez, Juan A.
    Bermudo, Sergio
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1618 - 1625
  • [10] Nonseparating Independent Sets of Cartesian Product Graphs
    Cao, Fayun
    Ren, Han
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (01): : 1 - 17