New congruences modulo 2, 4, and 8 for the number of tagged parts over the partitions with designated summands

被引:0
作者
Nayandeep Deka Baruah
Mandeep Kaur
机构
[1] Tezpur University,Department of Mathematical Sciences
来源
The Ramanujan Journal | 2020年 / 52卷
关键词
Partitions with designated summands; Tagged part; Dissection formula; Congruence; Primary 11P83; Secondary 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Lin introduced two new partition functions PDt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PD}_{\mathrm{t}}(n)$$\end{document} and PDOt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PDO}_{\mathrm{t}}(n)$$\end{document}, which count the total number of tagged parts over all partitions of n with designated summands and the total number of tagged parts over all partitions of n with designated summands in which all parts are odd. Lin also proved some congruences modulo 3 and 9 for PDt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PD}_{\mathrm{t}}(n)$$\end{document} and PDOt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PDO}_{\mathrm{t}}(n)$$\end{document}, and conjectured some congruences modulo 8. In this paper, we prove the congruences modulo 8 conjectured by Lin and also find many new congruences and infinite families of congruences modulo some small powers of 2.
引用
收藏
页码:253 / 274
页数:21
相关论文
共 14 条
[1]  
Adansie P(2018)New infinite families of congruences for the number of tagged parts over partitions with designated summands Int. J. Number Theory 14 1935-1942
[2]  
Chern S(2002)Partitions with designated summands Acta Arith. 105 51-66
[3]  
Xia EXW(2015)Partitions with designated summands in which all parts are odd Integers 15 A9-2938
[4]  
Andrews GE(2013)On the number of partitions with designated summands J. Number Theory 133 2929-234
[5]  
Lewis RP(2018)The number of tagged parts over the partitions with designated summands J. Number Theory 184 216-175
[6]  
Lovejoy J(2016)Arithmetic properties of partitions with designated summands J. Number Theory 159 160-undefined
[7]  
Baruah ND(undefined)undefined undefined undefined undefined-undefined
[8]  
Ojah KK(undefined)undefined undefined undefined undefined-undefined
[9]  
Chen WYC(undefined)undefined undefined undefined undefined-undefined
[10]  
Ji KQ(undefined)undefined undefined undefined undefined-undefined