States in non-associative quantum mechanics: uncertainty relations and semiclassical evolution

被引:0
作者
Martin Bojowald
Suddhasattwa Brahma
Umut Büyükçam
Thomas Strobl
机构
[1] The Pennsylvania State University,Institute for Gravitation and the Cosmos
[2] Université Claude Bernard Lyon 1,Institut Camille Jordan
来源
Journal of High Energy Physics | / 2015卷
关键词
Differential and Algebraic Geometry; Flux compactifications;
D O I
暂无
中图分类号
学科分类号
摘要
A non-associative algebra of observables cannot be represented as operators on a Hilbert space, but it may appear in certain physical situations. This article employs algebraic methods in order to derive uncertainty relations and semiclassical equations, based on general properties of quantum moments.
引用
收藏
相关论文
共 49 条
[1]  
Klimčík C(2002)WZW-Poisson manifolds J. Geom. Phys. 43 341-undefined
[2]  
Strobl T(2001)Poisson geometry with a 3 form background Prog. Theor. Phys. Suppl. 144 145-undefined
[3]  
Ševera P(2011)Non-geometric fluxes, asymmetric strings and nonassociative geometry J. Phys. A 44 385401-undefined
[4]  
WEinstein A(2012)Membrane σ-models and quantization of non-geometric flux backgrounds JHEP 09 012-undefined
[5]  
Blumenhagen R(2014)3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua JHEP 01 171-undefined
[6]  
Deser A(2014)Non-geometric fluxes, quasi-Hopf twist deformations and nonassociative quantum mechanics J. Math. Phys. 55 122301-undefined
[7]  
Lüst D(2010)T-duality and closed string non-commutative (doubled) geometry JHEP 12 084-undefined
[8]  
Plauschinn E(2011)Nonassociative gravity in string theory? J. Phys. A 44 015401-undefined
[9]  
Rennecke F(2014)Non-associative deformations of geometry in double field theory JHEP 04 141-undefined
[10]  
Mylonas D(1969)Magnetic charge quantization and angular momentum Annals Phys. 53 203-undefined