Essential dimension and the second serre conjecture for exceptional groups

被引:0
作者
V. É. Kordonskii
机构
[1] Moscow Center of Continous Mathematical Education,
来源
Mathematical Notes | 2000年 / 68卷
关键词
Serre conjectures; locally free action; rational action; essential dimension; exceptional Lie group; Lie group of type; complex algebraic variety;
D O I
暂无
中图分类号
学科分类号
摘要
We study the essential dimension of exceptional connected simply connected algebraic groups over algebraically closed fields. In the present paper, we find upper estimates for the essential dimensions of the groupsF4,E6, andE7. For the groupF4, the upper estimate, thus obtained coincides with the known lower estimate. We also prove the second Serre conjecture for the groupE6 and for a function field.
引用
收藏
页码:464 / 470
页数:6
相关论文
共 8 条
  • [1] Buhler J.(1997)On the essential dimension of a finite group Compositio Math. 106 159-179
  • [2] Reichstein Z.(2000)Essential dimension and the stable rationality of algebraic groups Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 18-21
  • [3] Kordonskii V. É.(1965)Regular elements of semisimple algebraic groups Publ. Math. IHES 25 281-312
  • [4] Steinberg R.(1986)Stable rationality of quotient spaces for simply connected groups Mat. Sb. 130 3-17
  • [5] Bogomolov F. A.(1985)Rationality of some quotient varieties Mat. Sb. 126 584-589
  • [6] Bogomolov F. A.(1984)Rationality of the moduli spaces of hyperelliptic curves Izv. Akad. Nauk SSSR Ser. Mat. 48 705-710
  • [7] Katsylo P. I.(undefined)undefined undefined undefined undefined-undefined
  • [8] Katsylo P. I.(undefined)undefined undefined undefined undefined-undefined