Is the Approximation Rate for European Pay-offs in the Black–Scholes Model Always 1/ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}$$\end{document}

被引:0
作者
Mika Hujo
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
关键词
Stochastic integral; Hermite polynomial; approximation; variance optimal hedge;
D O I
10.1007/s10959-006-0008-3
中图分类号
学科分类号
摘要
For a Borel-function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:\mathbb{R} \to \mathbb{R}$$\end{document}, we consider the approximation of a random variable f(W1) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{E}f^{2}(W_{1})<\infty$$\end{document} by stochastic integrals with respect to the Brownian motion \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W = (W_{t})_{t \in[0, 1]}$$\end{document} and the geometric Brownian motion, where the integrands are piecewise constant within certain deterministic time intervals. In earlier papers it has been shown that under certain regularity conditions the optimal approximation rate is 1/ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{n}$$\end{document}, if one optimizes over deterministic time-nets of cardinality n. We will show the existence of random variables f(W1) such that the approximation error tends as slowly to zero as one wishes.
引用
收藏
页码:190 / 203
页数:13
相关论文
共 3 条
  • [1] Geiss S.(2002)Quantitative approximation of certain stochastic integrals Stoch. Stoch. Rep. 73 241-270
  • [2] Gobet E.(2001)Discrete time hedging errors for options with irregular payoffs Finance Stoch. 5 357-367
  • [3] Temam E.(undefined)undefined undefined undefined undefined-undefined