A Convex-Block Approach to Numerical Radius Inequalities

被引:3
作者
Sababheh, Mohammad [1 ]
Conde, Cristian [2 ,3 ]
Moradi, Hamid Reza [4 ]
机构
[1] Princess Sumaya Univ Technol, Amman, Jordan
[2] Univ Nacl Gen Sarmiento, Inst Ciencias, Buenos Aires, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
[4] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Iran
关键词
numerical radius; norm inequality; Cartesian decomposition; triangle inequality; BOUNDS;
D O I
10.1134/S0016266323050039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple convex approach and block techniques are used to obtain new sharpened versions of numerical radius inequalities for Hilbert space operators. These include comparisons of norms of operators, their Cartesian parts, their numerical radii, and the numerical radius of the product of two operators.
引用
收藏
页码:26 / 30
页数:5
相关论文
共 8 条
[1]   Generalized spectral radius and norm inequalities for Hilbert space operators [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (12)
[2]   Bounds for the normalised Jensen functional [J].
Dragomir, Sever S. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (03) :471-478
[3]  
Gustafson K., 1995, Numerical Range: The Field of Values of Linear Operators and Matrices
[4]   Numerical Radius Inequalities for Certain 2 x 2 Operator Matrices [J].
Hirzallah, Omar ;
Kittaneh, Fuad ;
Shebrawi, Khalid .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (01) :129-147
[5]   Cartesian decomposition and numerical radius inequalities [J].
Kittaneh, Fuad ;
Moslehian, Mohammad Sal ;
Yamazaki, Takeaki .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 :46-53
[6]   Submultiplicativity of the numerical radius of commuting matrices of order two [J].
Li, Chi-Kwong ;
Poon, Yiu-Tung .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (01) :730-735
[7]   Numerical radius inequalities for certain 2 x 2 operator matrices II [J].
Shebrawi, Khalid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 523 :1-12
[8]   On upper and lower bounds of the numerical radius and an equality condition [J].
Yamazaki, Takeaki .
STUDIA MATHEMATICA, 2007, 178 (01) :83-89