Multifractal Spectra of Fragmentation Processes

被引:0
作者
Julien Berestycki
机构
[1] Université Pierre et Marie Curie et C.N.R.S,Laboratoire de Probabilités et Modèles Aléatoires
来源
Journal of Statistical Physics | 2003年 / 113卷
关键词
Fragmentation; Galton–Watson trees; multifractal spectra;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S(t),t≥0) be a homogeneous fragmentation of ]0,1[ with no loss of mass. For x∈]0,1[, we say that the fragmentation speed of x is v if and only if, as time passes, the size of the fragment that contains x decays exponentially with rate v. We show that there is vtyp>0 such that almost every point x∈]0,1[ has speed vtyp. Nonetheless, for v in a certain range, the random set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}v of points of speed v, is dense in ]0,1[, and we compute explicitly the spectrum v→Dim(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}v) where Dim is the Hausdorff dimension.
引用
收藏
页码:411 / 430
页数:19
相关论文
共 50 条
[21]   Influence of decompression rate on fragmentation processes: An experimental study [J].
Kremers, S. ;
Scheu, B. ;
Cordonnier, B. ;
Spieler, O. ;
Dingwell, D. B. .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2010, 193 (3-4) :182-188
[22]   Fragmentation associated with Lévy processes using snake [J].
Romain Abraham ;
Jean-François Delmas .
Probability Theory and Related Fields, 2008, 141 :113-154
[23]   International trade distributions and their relation with random fragmentation processes [J].
Bustos-Guajardo, R. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (06)
[24]   COAGULATION, FRAGMENTATION AND GROWTH PROCESSES IN A SIZE STRUCTURED POPULATION [J].
Banasiak, Jacek ;
Lamb, Wilson .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03) :563-585
[25]   Assessing subglacial processes from diatom fragmentation patterns [J].
Scherer, RP ;
Sjunneskog, CM ;
Iverson, NR ;
Hooyer, TS .
GEOLOGY, 2004, 32 (07) :557-560
[26]   Fragmentation in zooarchaeological assemblages: The role of equifinal, random processes [J].
Marom, Nimrod .
JOURNAL OF ARCHAEOLOGICAL SCIENCE-REPORTS, 2016, 8 :11-14
[27]   Exchangeable fragmentation-coalescence processes and their equilibrium measures [J].
Berestycki, J .
ELECTRONIC JOURNAL OF PROBABILITY, 2004, 9 :770-824
[28]   ON THE IRREGULAR PART OF V-STATISTICS MULTIFRACTAL SPECTRA FOR SYSTEMS WITH NON-UNIFORM SPECIFICATION [J].
Meson, Alejandro ;
Vericat, Fernando .
JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2015, 13 (01) :1-26
[29]   Precipitation Complexity Measurement Using Multifractal Spectra Empirical Mode Decomposition Detrended Fluctuation Analysis [J].
Liu, Dong ;
Luo, Mingjie ;
Fu, Qiang ;
Zhang, Yongjia ;
Imran, Khan M. ;
Zhao, Dan ;
Li, Tianxiao ;
Abrar, Faiz M. .
WATER RESOURCES MANAGEMENT, 2016, 30 (02) :505-522
[30]   Patterns and processes of shell fragmentation in modem and ancient marine environments [J].
Zuschin, M ;
Stachowitsch, M ;
Stanton, RJ .
EARTH-SCIENCE REVIEWS, 2003, 63 (1-2) :33-82