Homoclinic Bifurcation of Orbit Flip with Resonant Principal Eigenvalues

被引:0
作者
Tian Si Zhang
De Ming Zhu
机构
[1] East China Normal University,Department of Mathematics
来源
Acta Mathematica Sinica | 2006年 / 22卷
关键词
Orbit flip; Homoclinic orbit; Periodic orbit; Resonance; Principal eigenvalues; 37C29; 34C23; 34C37;
D O I
暂无
中图分类号
学科分类号
摘要
Codimension–3 bifurcations of an orbit–flip homoclinic orbit with resonant principal eigenvalues are studied for a four–dimensional system. The existence, number, co–existence and non–coexistence of 1–homoclinic orbit, 1–periodic orbit, 2n–homoclinic orbit and 2n–periodic orbit are obtained. The bifurcation surfaces and existence regions are also given.
引用
收藏
页码:855 / 864
页数:9
相关论文
共 50 条
  • [21] Degenerate Orbit Flip Homoclinic Bifurcations with Higher Dimensions
    Ran Chao WU Jian Hua SUN Department of Mathematics
    [J]. ActaMathematicaSinica(EnglishSeries), 2006, 22 (06) : 1651 - 1656
  • [22] Degenerate Orbit Flip Homoclinic Bifurcations with Higher Dimensions
    Ran Chao Wu
    Jian Hua Sun
    [J]. Acta Mathematica Sinica, 2006, 22 : 1651 - 1656
  • [23] The Twisting Bifurcations of Double Homoclinic Loops with Resonant Eigenvalues
    Li, Xiaodong
    Zhang, Weipeng
    Geng, Fengjie
    Huang, Jicai
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [24] Bifurcation from a homoclinic orbit in partial functional differential equations
    Ruan, SG
    Wei, JJ
    Wu, JH
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (05) : 1293 - 1322
  • [25] Codimension 3 Nontwisted Double Homoclinic Loops Bifurcations with Resonant Eigenvalues
    Zhang, Weipeng
    Zhu, Deming
    Liu, Dan
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (04) : 893 - 908
  • [26] Codimension 3 Nontwisted Double Homoclinic Loops Bifurcations with Resonant Eigenvalues
    Weipeng Zhang
    Deming Zhu
    Dan Liu
    [J]. Journal of Dynamics and Differential Equations, 2008, 20 : 893 - 908
  • [27] Weak type heterodimensional cycle bifurcation with orbit-flip
    LU QiuYing1
    2Department of Mathematics
    3School of Information Engineering
    [J]. ScienceChina(Mathematics), 2011, 54 (06) : 1175 - 1196
  • [28] Homoclinic bifurcation with nonhyperbolic equilibria
    Liu, Xingbo
    Fu, Xianlong
    Zhu, Deming
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) : 2931 - 2939
  • [29] Weak type heterodimensional cycle bifurcation with orbit-flip
    QiuYing Lu
    DeMing Zhu
    FengJie Geng
    [J]. Science China Mathematics, 2011, 54 : 1175 - 1196
  • [30] Weak type heterodimensional cycle bifurcation with orbit-flip
    Lu QiuYing
    Zhu DeMing
    Geng FengJie
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (06) : 1175 - 1196