Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death

被引:0
|
作者
Shujuan Xu
Huizhen Zheng
Ronglin Ma
Di Wu
Yanxia Pan
Chunyang Yin
Meng Gao
Weili Wang
Wei Li
Sijin Liu
Zhifang Chai
Ruibin Li
机构
[1] Soochow University,State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD
[2] State Key Laboratory of Environmental Chemistry and Ecotoxicology,X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions
[3] Research Center for Eco-Environmental Sciences,undefined
[4] Chinese Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Sustainable developments of nanotechnology necessitate the exploration of structure-activity relationships (SARs) at nano-bio interfaces. While ferroptosis may contribute in the developments of some severe diseases (e.g., Parkinson’s disease, stroke and tumors), the cellular pathways and nano-SARs are rarely explored in diseases elicited by nano-sized ferroptosis inducers. Here we find that WS2 and MoS2 nanosheets induce an iron-dependent cell death, ferroptosis in epithelial (BEAS-2B) and macrophage (THP-1) cells, evidenced by the suppression of glutathione peroxidase 4 (GPX4), oxygen radical generation and lipid peroxidation. Notably, nano-SAR analysis of 20 transition metal dichalcogenides (TMDs) disclosures the decisive role of surface vacancy in ferroptosis. We therefore develop methanol and sulfide passivation as safe design approaches for TMD nanosheets. These findings are validated in animal lungs by oropharyngeal aspiration of TMD nanosheets. Overall, our study highlights the key cellular events as well as nano-SARs in TMD-induced ferroptosis, which may facilitate the safe design of nanoproducts.
引用
收藏
相关论文
共 50 条
  • [1] Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death
    Xu, Shujuan
    Zheng, Huizhen
    Ma, Ronglin
    Wu, Di
    Pan, Yanxia
    Yin, Chunyang
    Gao, Meng
    Wang, Weili
    Li, Wei
    Liu, Sijin
    Chai, Zhifang
    Li, Ruibin
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] 2D transition metal dichalcogenides
    Sajedeh Manzeli
    Dmitry Ovchinnikov
    Diego Pasquier
    Oleg V. Yazyev
    Andras Kis
    Nature Reviews Materials, 2
  • [3] 2D transition metal dichalcogenides
    Manzeli, Sajedeh
    Ovchinnikov, Dmitry
    Pasquier, Diego
    Yazyev, Oleg V.
    Kis, Andras
    NATURE REVIEWS MATERIALS, 2017, 2 (08):
  • [4] 2D Transition Metal Dichalcogenides for Photocatalysis
    Yang, Ruijie
    Fan, Yingying
    Zhang, Yuefeng
    Mei, Liang
    Zhu, Rongshu
    Qin, Jiaqian
    Hu, Jinguang
    Chen, Zhangxing
    Hau Ng, Yun
    Voiry, Damien
    Li, Shuang
    Lu, Qingye
    Wang, Qian
    Yu, Jimmy C.
    Zeng, Zhiyuan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (13)
  • [5] The deep-acceptor nature of the chalcogen vacancies in 2D transition-metal dichalcogenides
    Khalid, Shoaib
    Medasani, Bharat
    Lyons, John L.
    Wickramaratne, Darshana
    Janotti, Anderson
    2D MATERIALS, 2024, 11 (02)
  • [6] Longitudinal unzipping of 2D transition metal dichalcogenides
    Suchithra Padmajan Sasikala
    Yashpal Singh
    Li Bing
    Taeyoung Yun
    Sung Hwan Koo
    Yousung Jung
    Sang Ouk Kim
    Nature Communications, 11
  • [7] 2D Group IVB Transition Metal Dichalcogenides
    Yan, Chaoyi
    Gong, Chuanhui
    Wangyang, Peihua
    Chu, Junwei
    Hu, Kai
    Li, Chaobo
    Wang, Xuepeng
    Du, Xinchuan
    Zhai, Tianyou
    Li, Yanrong
    Xiong, Jie
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (39)
  • [8] Nanophotonics with 2D transition metal dichalcogenides [Invited]
    Krasnok, Alex
    Lepeshov, Sergey
    Alu, Andrea
    OPTICS EXPRESS, 2018, 26 (12): : 15972 - 15994
  • [9] 2D nanomaterials: graphene and transition metal dichalcogenides
    Zhang, Hua
    Chhowalla, Manish
    Liu, Zhongfan
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (09) : 3015 - 3017
  • [10] Substitutional doping in 2D transition metal dichalcogenides
    Leyi Loh
    Zhepeng Zhang
    Michel Bosman
    Goki Eda
    Nano Research, 2021, 14 : 1668 - 1681