State-constrained optimal control of nonlinear elliptic variational inequalities

被引:0
作者
S. Serovajsky
机构
[1] Al-Farabi Kazakh National University,
来源
Optimization Letters | 2014年 / 8卷
关键词
Optimal control; Variational inequality; State constraints; Penalty method;
D O I
暂无
中图分类号
学科分类号
摘要
An optimization control problem for systems described by abstract variational inequalities with state constraints is considered. The solvability of this problem is proved. The problem is approximated by the penalty method. The convergence of this method is proved. Necessary conditions of optimality for the approximation problem are obtained. Its solution is an approximate optimal control of the initial problem.
引用
收藏
页码:2041 / 2051
页数:10
相关论文
共 25 条
[1]  
He Z-X(1987)State constrained control problems governed by variational inequalities SIAM J. Control Optim. 25 1119-1145
[2]  
Bonnans J(1995)An extension of Pontryagin’s principle for state-constrained optimal control of semilinear elliptic equations and variational inequalities SIAM J. Control Optim. 33 274-298
[3]  
Casas E(2000)Some optimal control problems governed by elliptic variational inequalities with control and state constraint on the boundary J. Optim. Theory Appl. 106 627-655
[4]  
Wang G(2005)Optimal control of obstacle for quasi-linear elliptic variational bilateral problems SIAM J. Control Optim. 44 1067-1080
[5]  
Zhao Y(2006)The existence results for optimal control problems governed by a variational inequality J. Math. Anal. Appl. 321 595-608
[6]  
Li W(2002)Optimal control of the obstacle for a parabolic variational inequality J. Math. Anal. Appl. 268 602-614
[7]  
Chen Q(2007)Constrained extremum problems with infinite-dimensional image: selection and necessary conditions J. Optim. Theory Appl. 135 37-53
[8]  
Chu D(1993)Boundary control of semilinear elliptic equations with pointwise state constraints SIAM J. Control Optim. 33 993-1006
[9]  
Tan RCE(2006)Conditions d’optimalité du second ordre nécessaires ou suffisantes pour les problèmes de commande optimale avec une contrainte sur l’état et une commande scalaires C. R. Acad. Sci. Paris Ser. I. 343 473-478
[10]  
Zhou YY(2007)On regularity of solutions and Lagrange multipliers of optimal control problems for semilinear equations with mixed pointwise control-state constraints SIAM J. Control Optim. 46 1098-1115