Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates

被引:0
作者
M. Correggi
N. Rougerie
机构
[1] Università degli Studi Roma Tre,Dipartimento di Matematica
[2] Université de Grenoble 1 and CNRS,undefined
[3] LPMMC,undefined
[4] Maison des Magistères CNRS,undefined
来源
Communications in Mathematical Physics | 2013年 / 321卷
关键词
Vortex; Ground State Energy; Critical Speed; Obstacle Problem; Vortex Lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP) theory and investigate the properties of the ground state of the theory for rotational speeds close to the critical speed for vortex nucleation. While one could expect that the vortex distribution should be homogeneous within the condensate we prove by means of an asymptotic analysis in the strongly interacting (Thomas-Fermi) regime that it is not. More precisely we rigorously derive a formula due to Sheehy and Radzihovsky (Phys Rev A 70:063620(R), 2004) for the vortex distribution, a consequence of which is that the vortex distribution is strongly inhomogeneous close to the critical speed and gradually homogenizes when the rotation speed is increased.
引用
收藏
页码:817 / 860
页数:43
相关论文
共 105 条
[1]  
Abo-Shaeer J.R.(2001)Observation of Vortex Lattices in Bose-Einstein Condensates Science 292 476-479
[2]  
Raman C.(2005)Giant Vortex and the Breakdown of Strong Pinning in a Rotating Bose-Einstein Condensate Arch. Rat. Mech. Anal. 178 247-286
[3]  
Vogels J.M.(2006)Vortex Lattices in Rotating Bose-Einstein Condensates SIAM J. Math. Anal. 38 874-893
[4]  
Ketterle W.(2005)Vortex Patterns in a Fast Rotating Bose-Einstein Condensate Phys. Rev. A 71 023611-2406
[5]  
Aftalion A.(2011)Non-Existence of Vortices in the Small Density Region of a Condensate J. Funct. Anal. 260 2387-372
[6]  
Alama S.(2001)Pinning phenomena in the Ginzburg-Landau model of superconductivity J. Maths. Pures Appl. 80 339-27
[7]  
Bronsard L.(2011)Gamma-convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves J. Anal. Math. 114 341-752
[8]  
Aftation A.(1998)Minimization of a Ginzburg-Landau Type Functional with Nonvanishing Dirichlet Boundary Condition Calc. Var. Part. Diff. Eqs. 7 1-171
[9]  
Blanc X.(2012)Convergence of Ginzburg-Landau functionals in 3D superconductivity Arch. Rat. Mech. Anal. 205 699-374
[10]  
Aftalion A.(2013)Vortex density models for superconductivity and superfluidity Commun. Math. Phys. 318 131-305