Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD)

被引:0
|
作者
S. K. Maurya
Ksh. Newton Singh
B. Dayanandan
机构
[1] University of Nizwa,Department of Mathematical and Physical Sciences, College of Arts and Science
[2] National Defence Academy,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We presented a non-singular solution of Einstein’s field equations using gravitational decoupling by means of complete geometric deformation (CGD) in the anisotropic domain for compact star models. In this approach both the gravitational potentials are deformed as ν=ξ+βh(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \nu =\xi +\beta \,h(r)$$\end{document} and e-λ=μ+βf(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ e^{-\lambda }=\mu +\beta \,f(r)$$\end{document}, where β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} is a coupling constant. Then we solve more complex field equations under above transformations by using a particular form of deformation function h(r) for two different cases namely the mimic constraint for the pressure {p(r)=θ11}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{p(r)=\theta ^1_1\}$$\end{document} and the mimic constraint for the density {ρ(r)=θ00}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\rho (r)=\theta _0^0\}$$\end{document} (Ovalle in Phys Lett B 788:213, 2019). The compact star models have been constructed by taking M0/R=0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_0/R=0.2$$\end{document} for two different non-zero values of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Moreover, the boundary conditions are also performed for the said complete geometric deformation in the presence of anisotropic matter distribution. We also find pressure, density, anisotropy and causality conditions that are physically acceptable throughout the model. The M-R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M-R$$\end{document} curve is also presented to support our model for describing a realistic compact object such as neutron stars.
引用
收藏
相关论文
共 20 条
  • [1] Non-singular solution for anisotropic model by gravitational decoupling in the framework of complete geometric deformation (CGD)
    Maurya, S. K.
    Singh, Ksh Newton
    Dayanandan, B.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (05):
  • [2] Anisotropic charged Heintzmann solution using gravitational decoupling through extended geometric deformation approach
    Zubair, M.
    Amin, Mobeen
    Azmat, Hina
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [3] Non-singular black hole by gravitational decoupling and some thermodynamic properties
    Misyura, Maxim
    Rincon, Angel
    Vertogradov, Vitalii
    PHYSICS OF THE DARK UNIVERSE, 2024, 46
  • [4] Anisotropic interior solution by gravitational decoupling based on a non-standard anisotropy
    G. Abellán
    Á. Rincón
    E. Fuenmayor
    E. Contreras
    The European Physical Journal Plus, 135
  • [5] Anisotropic interior solution by gravitational decoupling based on a non-standard anisotropy
    Abellan, G.
    Rincon, A.
    Fuenmayor, E.
    Contreras, E.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07):
  • [6] DIRECT SOLUTION PROCEDURE FOR SOLUTION OF HARMONIC PROBLEMS USING COMPLETE, NON-SINGULAR, TREFFTZ FUNCTIONS
    CHEUNG, YK
    JIN, WG
    ZIENKIEWICZ, OC
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1989, 5 (03): : 159 - 169
  • [7] Spherically symmetric anisotropic charged solution under complete geometric deformation approach
    S. K. Maurya
    Asma Mohammed Al Aamri
    Athari Khalifa Al Aamri
    Riju Nag
    The European Physical Journal C, 2021, 81
  • [8] Spherically symmetric anisotropic charged solution under complete geometric deformation approach
    Maurya, S. K.
    Al Aamri, Asma Mohammed
    Al Aamri, Athari Khalifa
    Nag, Riju
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (08):
  • [9] A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach
    Contreras, Ernesto
    Rincon, Angel
    Bargueno, Pedro
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (03):
  • [10] A general interior anisotropic solution for a BTZ vacuum in the context of the minimal geometric deformation decoupling approach
    Ernesto Contreras
    Ángel Rincón
    Pedro Bargueño
    The European Physical Journal C, 2019, 79