Integro-functional equations for solving the inverse problem for a nonlinear ordinary differential equation

被引:0
作者
Denisov A.M. [1 ]
机构
[1] Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Inverse Problem; Functional Equation;
D O I
10.1007/s10625-005-0276-1
中图分类号
学科分类号
摘要
We consider an inverse problem for a second-order nonlinear ordinary dierential equation with boundary conditions depending on a parameter. We prove existence and uniqueness theorems for the inverse problem by reducing it to an integro-differential equation if the original equation is autonomous and to a system of equations if the original equation is nonautonomous. Inverse problems for nonlinear ordinary differential equations were considered by numerous authors (e.g., see [1-11]). The present paper develops the results in [10, 11]. © 2005 Pleiades Publishing, Inc.
引用
收藏
页码:1267 / 1274
页数:7
相关论文
共 11 条
[1]  
Anikonov Yu.E., Mat. Zametki, 12, 2, pp. 163-166, (1972)
[2]  
Tikhonov N.A., Zh. Vychislit. Mat. Mat. Fiz., 23, 1, pp. 95-101, (1983)
[3]  
Denisov A.M., Dokl. Akad. Nauk SSSR, 307, 5, pp. 1040-1042, (1989)
[4]  
Lorenzi A., Appicable Analysis, 46, pp. 129-143, (1992)
[5]  
Denisov A.M., Lorenzi A., Differ. and Integ. Equat., 5, pp. 567-579, (1992)
[6]  
Denisov A.M., Solov'eva S.I., Zh. Vychislit. Mat. Mat. Fiz., 33, 9, pp. 1294-1304, (1993)
[7]  
Denisov A.M., Solov'eva S.I., J. Inverse Ill-posed Problems, 2, 3, pp. 227-233, (1994)
[8]  
Kamimura Y., Proc. Japan Acad. Ser. A, 74, pp. 53-56, (1998)
[9]  
Kamimura Y., Differ. and Integ. Equat., 11, pp. 341-359, (1998)
[10]  
Denisov A.M., Zh. Vychislit. Mat. Mat. Fiz., 40, 11, pp. 1725-1738, (2000)