Sharp isoperimetric and Sobolev inequalities in spaces with nonnegative Ricci curvature

被引:0
|
作者
Zoltán M. Balogh
Alexandru Kristály
机构
[1] Universität Bern,Mathematisches Institute
[2] Babeş-Bolyai University,Department of Economics
[3] Óbuda University,Institute of Applied Mathematics
来源
Mathematische Annalen | 2023年 / 385卷
关键词
Primary 53C23; 53C21; Secondary 53C24; 49Q20;
D O I
暂无
中图分类号
学科分类号
摘要
By using optimal mass transport theory we prove a sharp isoperimetric inequality in CD(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf {CD}} (0,N)$$\end{document} metric measure spaces assuming an asymptotic volume growth at infinity. Our result extends recently proven isoperimetric inequalities for normed spaces and Riemannian manifolds to a nonsmooth framework. In the case of n-dimensional Riemannian manifolds with nonnegative Ricci curvature, we outline an alternative proof of the rigidity result of Brendle (Comm Pure Appl Math 2021:13717, 2021). As applications of the isoperimetric inequality, we establish Sobolev and Rayleigh-Faber-Krahn inequalities with explicit sharp constants in Riemannian manifolds with nonnegative Ricci curvature; here we use appropriate symmetrization techniques and optimal volume non-collapsing properties. The equality cases in the latter inequalities are also characterized by stating that sufficiently smooth, nonzero extremal functions exist if and only if the Riemannian manifold is isometric to the Euclidean space.
引用
收藏
页码:1747 / 1773
页数:26
相关论文
共 50 条
  • [31] Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces
    Batista, M.
    Mirandola, H.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) : 1859 - 1872
  • [32] Sobolev and isoperimetric inequalities for submanifolds in weighted ambient spaces
    M. Batista
    H. Mirandola
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 1859 - 1872
  • [33] Ends of metric measure spaces with nonnegative Ricci curvature
    Watanabe, Masayoshi
    NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006, 2009, 55 : 335 - 343
  • [34] On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth
    Antonelli, Gioacchino
    Brue, Elia
    Fogagnolo, Mattia
    Pozzetta, Marco
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)
  • [35] Uniqueness on average of large isoperimetric sets in noncompact manifolds with nonnegative Ricci curvature
    Antonelli, Gioacchino
    Pozzetta, Marco
    Semola, Daniele
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2025,
  • [36] On the existence of isoperimetric regions in manifolds with nonnegative Ricci curvature and Euclidean volume growth
    Gioacchino Antonelli
    Elia Bruè
    Mattia Fogagnolo
    Marco Pozzetta
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [37] Sharp trace inequalities on fractional Sobolev spaces
    Pak, Hee Chul
    Park, Young Ja
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) : 761 - 763
  • [38] Symmetrization and Sharp Sobolev Inequalities in Metric Spaces
    Kalis, Jan
    Milman, Mario
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (02): : 499 - 515
  • [39] Isoperimetric problem and structure at infinity on Alexandrov spaces with nonnegative curvature
    Antonelli, Gioacchino
    Pozzetta, Marco
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (04)
  • [40] Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant
    Xia, CY
    ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (04) : 1253 - 1259