Effects of the momentum dependence of nuclear symmetry potential on pion observables in Sn + Sn collisions at 270 MeV/nucleon

被引:0
|
作者
Gao-Feng Wei
Xin Huang
Qi-Jun Zhi
Ai-Jun Dong
Chang-Gen Peng
Zheng-Wen Long
机构
[1] Guizhou Normal University,School of Physics and Electronic Science
[2] Guizhou Normal University,Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing
[3] Guizhou University,Guizhou Provincial Key Laboratory of Public Big Data
[4] Guizhou University,College of Physics
来源
Nuclear Science and Techniques | 2022年 / 33卷
关键词
Nuclear symmetry potential; Momentum dependence; Symmetry energy;
D O I
暂无
中图分类号
学科分类号
摘要
Within a transport model, we investigated the effects of the momentum dependence of the nuclear symmetry potential on the pion observables in central Sn + Sn collisions at 270 MeV/nucleon. To this end, the quantity Usym∞(ρ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\text {sym}^{\infty }(\rho _{0})$$\end{document} (i.e., the value of the nuclear symmetry potential at the saturation density ρ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{0}$$\end{document} and infinitely large nucleon momentum) was used to characterize the momentum dependence of the nuclear symmetry potential. With a certain L (i.e., the slope of the nuclear symmetry energy at ρ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{0}$$\end{document}), the characteristic parameter Usym∞(ρ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\text {sym}^{\infty }(\rho _{0})$$\end{document} of the symmetry potential significantly affects the production of π-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{-}$$\end{document} and π+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{+}$$\end{document} and their pion ratios. Moreover, by comparing the charged pion yields, pion ratios, and spectral pion ratios of the theoretical simulations for the reactions 108\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{108}$$\end{document}Sn + 112\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{112}$$\end{document}Sn and 132\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{132}$$\end{document}Sn + 124\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{124}$$\end{document}Sn with the corresponding data in the Sπ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}RIT experiments, we found that our results favor a constraint on Usym∞(ρ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\text {sym}^{\infty }(\rho _{0})$$\end{document} (i.e., -160-9+18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-160^{+18}_{-9}$$\end{document} MeV), and L is also suggested within a range of 62.7 MeV<L<93.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<L<93.1$$\end{document} MeV. In addition, the pion observable for 197\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{197}$$\end{document}Au + 197\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{197}$$\end{document}Au collisions at 400 MeV/nucleon also supports the extracted value for Usym∞(ρ0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_\text {sym}^{\infty }(\rho _{0})$$\end{document}.
引用
收藏
相关论文
共 5 条
  • [1] Effects of the momentum dependence of nuclear symmetry potential on pion observables in Sn plus Sn collisions at 270 MeV/nucleon
    Wei, Gao-Feng
    Huang, Xin
    Zhi, Qi-Jun
    Dong, Ai-Jun
    Peng, Chang-Gen
    Long, Zheng-Wen
    NUCLEAR SCIENCE AND TECHNIQUES, 2022, 33 (12)
  • [2] Effect of the momentum dependence of nuclear symmetry potential on the transverse and elliptic flows
    Lei Zhang
    Yuan Gao
    Yun Du
    Guang-Hua Zuo
    Gao-Chan Yong
    The European Physical Journal A, 2012, 48
  • [3] Effects of the pion-nucleon potential in 197Au + 197Au collisions at 1.5 GeV/nucleon
    Xie, Wen-Jie
    Su, Jun
    Zhu, Long
    Zhang, Feng-Shou
    PHYSICAL REVIEW C, 2018, 97 (06)
  • [4] Reconstructed primary fragments and symmetry energy, temperature and density of the fragmenting source in 64Zn+112Sn at 40 MeV/nucleon
    Liu, X.
    Lin, W.
    Wada, R.
    Huang, M.
    Ren, P.
    Chen, Z.
    Wang, J.
    Xiao, G. Q.
    Zhang, S.
    Han, R.
    Liu, J.
    Shi, F.
    Rodrigues, M. R. D.
    Kowalski, S.
    Keutgen, T.
    Hagel, K.
    Barbui, M.
    Bonasera, A.
    Natowitz, J. B.
    Zheng, H.
    NUCLEAR PHYSICS A, 2015, 933 : 290 - 305
  • [5] Investigation of isotope composition of nuclear fragments with angular momentum and Coulomb effects in peripheral 84Kr+112,124Sn collisons at 35 A MeV
    Buyukcizmeci, Nihal
    Ergun, Aysegul
    Imal, Hamide
    Ogul, Riza
    Botvina, Alexander S.
    NUCLEAR SCIENCE AND TECHNIQUES, 2015, 26 (02)