On the iterative criterion for strong H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-tensors

被引:1
|
作者
Qilong Liu
Chaoqian Li
Yaotang Li
机构
[1] Yunnan University,School of Mathematics and Statistics
关键词
Strong ; -tensors; Iteration; Positive definiteness; 15A18; 15A21; 15A69;
D O I
10.1007/s40314-016-0311-2
中图分类号
学科分类号
摘要
Strong H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-tensors play an important role in identifying the positive definiteness of even-order real symmetric tensor. An iterative algorithm for identifying strong H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-tensors was given in Li et al. (J Comput Appl Math 255:1–14, 2014), where the method does not stop in finite iterative steps when the tensor is not a strong H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-tensor. In this paper, to overcome this drawback, we present a new algorithm which always terminates after finite iterative steps and needs fewer iterations than the earlier one for a general tensor. Numerical examples are given to show the effectiveness of the proposed method.
引用
收藏
页码:1623 / 1635
页数:12
相关论文
共 41 条