On the smoothness of normed spaces

被引:0
作者
Józef Banaś
Justyna Ochab
Tomasz Zając
机构
[1] Rzeszów University of Technology,Faculty of Mathematics and Applied Physics
来源
Annals of Functional Analysis | 2024年 / 15卷
关键词
Normed space; Strict convexity; Uniform convexity; Smoothnes; Uniform smoothness; Modulus of convexity; Modulus of smoothness; 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the paper is to discuss and clarify some concepts of the geometric theory of normed spaces. We mainly intend to present recent results concerning the concept of smoothness of normed spaces in connection with the concepts of the strict and uniform convexity of those spaces.
引用
收藏
相关论文
共 50 条
[31]   A Variant of Wigner's Theorem in Normed Spaces [J].
Ilisevic, Dijana ;
Turnsek, Aleksej .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
[32]   k-Normed topological vector spaces [J].
S. V. Lyudkovskiî .
Siberian Mathematical Journal, 2000, 41 :141-154
[33]   Pyramids in three-dimensional normed spaces [J].
Makecv V.V. .
Journal of Mathematical Sciences, 2009, 161 (3) :427-430
[34]   On Wigner’s theorem in smooth normed spaces [J].
Dijana Ilišević ;
Aleksej Turnšek .
Aequationes mathematicae, 2020, 94 :1257-1267
[35]   ON LINEAR FUNCTIONAL EQUATIONS AND COMPLETENESS OF NORMED SPACES [J].
Fosner, Ajda ;
Ger, Roman ;
Gilanyi, Attila ;
Moslehian, Mohammad Sal .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01) :196-200
[36]   A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED SPACES [J].
Mytrofanov, M. A. ;
Ravsky, A., V .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (01) :107-110
[37]   Extremally distant normed spaces with additional restrictions [J].
F. L. Bakharev .
Mathematical Notes, 2006, 79 :314-326
[38]   A Variant of Wigner’s Theorem in Normed Spaces [J].
Dijana Ilišević ;
Aleksej Turnšek .
Mediterranean Journal of Mathematics, 2021, 18
[39]   Duality of κ-normed topological vector spaces and their applications [J].
Ludkovsky S.V. .
Journal of Mathematical Sciences, 2009, 157 (2) :367-385
[40]   Projections in normed linear spaces and sufficient enlargements [J].
Ostrovskii, MI .
ARCHIV DER MATHEMATIK, 1998, 71 (04) :315-324