On the smoothness of normed spaces

被引:0
作者
Józef Banaś
Justyna Ochab
Tomasz Zając
机构
[1] Rzeszów University of Technology,Faculty of Mathematics and Applied Physics
来源
Annals of Functional Analysis | 2024年 / 15卷
关键词
Normed space; Strict convexity; Uniform convexity; Smoothnes; Uniform smoothness; Modulus of convexity; Modulus of smoothness; 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of the paper is to discuss and clarify some concepts of the geometric theory of normed spaces. We mainly intend to present recent results concerning the concept of smoothness of normed spaces in connection with the concepts of the strict and uniform convexity of those spaces.
引用
收藏
相关论文
共 50 条
[21]   VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES [J].
Okelo, N. B. ;
Agure, J. O. ;
Oleche, P. O. .
ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) :1387-1397
[22]   Normed Spaces Which Are Not Mackey Groups [J].
Gabriyelyan, Saak .
AXIOMS, 2021, 10 (03)
[23]   LIMIT SETS IN NORMED LINEAR SPACES [J].
Charatonik, Wlodzimierz J. ;
Samulewicz, Alicja ;
Witula, Roman .
COLLOQUIUM MATHEMATICUM, 2017, 147 (01) :35-42
[24]   The projection methods in countably normed spaces [J].
Nashat Faried ;
Hany A El-Sharkawy .
Journal of Inequalities and Applications, 2015
[25]   RINGS AND BILIPSCHITZ MAPS IN NORMED SPACES [J].
Tukia, Pekka ;
Vaisala, Jussi .
ANNALES FENNICI MATHEMATICI, 2021, 46 (01) :587-591
[26]   Paracomplete normed spaces and Fredholm theory [J].
Alvarez T. ;
González M. .
Rendiconti del Circolo Matematico di Palermo, 1999, 48 (2) :257-264
[27]   Cone normed spaces and weighted means [J].
Sonmez, Ayse ;
Cakalli, Huseyin .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) :1660-1666
[28]   Embedding metric spaces into normed spaces and estimates of metric capacity [J].
Averkov, Gennadiy ;
Duevelmeyer, Nico .
MONATSHEFTE FUR MATHEMATIK, 2007, 152 (03) :197-206
[29]   On moduli of smoothness of functions in Orlicz spaces [J].
Jafarov, Sadulla Z. .
TBILISI MATHEMATICAL JOURNAL, 2019, 12 (03) :121-129
[30]   Residuality Properties of Certain Classes of Convex Functions on Normed Linear Spaces [J].
Barshad, Kay ;
Reich, Simeon ;
Zaslavski, Alexander J. .
JOURNAL OF CONVEX ANALYSIS, 2022, 29 (03) :795-806