Declawing a graph: polyhedra and Branch-and-Cut algorithms

被引:0
作者
Felipe C. Fragoso
Gilberto F. de Sousa Filho
Fábio Protti
机构
[1] Universidade Federal da Paraíba (UFPB),Centro de Informática
[2] Universidade Federal Fluminense (UFF),Instituto de Computação
来源
Journal of Combinatorial Optimization | 2021年 / 42卷
关键词
Graph declawing problem; Claw-free graphs; Branch-and-cut; Polyhedral combinatorics;
D O I
暂无
中图分类号
学科分类号
摘要
The complete bipartite graph K1,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{1,3}$$\end{document} is called a claw. A graph is said to be claw-free if it contains no induced subgraph isomorphic to a claw. Given a graph G, the NP-hard Graph Declawing Problem (GDP) consists of finding a minimum set S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} such that G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} is claw-free. This work develops a polyhedral study of the GDP polytope, expliciting its full dimensionality, proposing and testing five families of facets: trivial inequalities, claw inequalities, star inequalities, lantern inequalities, and binary star inequalities. In total, four Branch-and-Cut algorithms with separation heuristics have been developed to test the computational benefits of each proposed family on random graph instances and random interval graph instances. Our results show that the model that uses a separation heuristics proposed for star inequalities achieves better results on both set of instances in almost all cases.
引用
收藏
页码:85 / 124
页数:39
相关论文
共 50 条
[1]  
Aravind NR(2017)On polynomial kernelization of h-free edge deletion Algorithmica 79 654-666
[2]  
Sandeep RB(2016)Efficient algorithms for cluster editing J Comb Optim 31 347-371
[3]  
Sivadasan N(1999)A short proof that proper = unit Discret Math 201 21-23
[4]  
Bastos L(2013)Exact algorithms for finding longest cycles in claw-free graphs Algorithmica 65 129-145
[5]  
Ochi LS(2016)Polynomial kernelization for removing induced claws and diamonds Theory Comput Syst 60 615-636
[6]  
Protti F(1997)Claw-free graphs: A survey Discrete Math 164 87-147
[7]  
Subramanian A(1985)Interval graphs ans interval orders Discret Appl Math 55 135-149
[8]  
Martins IC(2013)A polynomial kernel for proper interval vertex deletion SIAM J Discret Math 27 1964-1976
[9]  
Pinheiro RGS(2003)Sum coloring interval and Algorithmica 37 187-209
[10]  
Bogart KP(2014)-claw free graphs with application to scheduling dependent jobs Algorithmica 70 513-560