Composite kernel learning

被引:5
|
作者
Marie Szafranski
Yves Grandvalet
Alain Rakotomamonjy
机构
[1] Université d’Évry Val d’Essonne,CNRS FRE 3190—IBISC
[2] Universités d’Aix-Marseille,CNRS UMR 6166—LIF
[3] Université de Technologie de Compiègne,CNRS UMR 6599—Heudiasyc
[4] Université de Rouen,EA 4108—LITIS
来源
Machine Learning | 2010年 / 79卷
关键词
Supervized learning; Support vector machine; Kernel learning; Structured kernels; Feature selection and sparsity;
D O I
暂无
中图分类号
学科分类号
摘要
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.
引用
收藏
页码:73 / 103
页数:30
相关论文
共 50 条
  • [41] Multi-Kernel Learning for Heterogeneous Data
    Liao, Chunlan
    Peng, Shili
    IEEE ACCESS, 2025, 13 : 45340 - 45349
  • [42] Multiple Kernel Learning Based on Cooperative Clustering
    Du, Haiyang
    Yin, Chuanhuan
    Mu, Shaomin
    INTELLIGENT COMPUTING METHODOLOGIES, 2014, 8589 : 107 - 117
  • [43] Metric and Kernel Learning Using a Linear Transformation
    Jain, Prateek
    Kulis, Brian
    Davis, Jason V.
    Dhillon, Inderjit S.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 519 - 547
  • [44] Unsupervised kernel learning for abnormal events detection
    Weiya Ren
    Guohui Li
    Boliang Sun
    Kuihua Huang
    The Visual Computer, 2015, 31 : 245 - 255
  • [45] lp-Norm Multiple Kernel Learning
    Kloft, Marius
    Brefeld, Ulf
    Sonnenburg, Soeren
    Zien, Alexander
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 953 - 997
  • [46] Multiple Random Subset-Kernel Learning
    Nishida, Kenji
    Fujiki, Jun
    Kurita, Takio
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 14TH INTERNATIONAL CONFERENCE, CAIP 2011, PT I, 2011, 6854 : 343 - 350
  • [47] Feature Selection and Kernel Learning for Local Learning-Based Clustering
    Zeng, Hong
    Cheung, Yiu-Ming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1532 - 1547
  • [48] Sparse Bayesian Modeling With Adaptive Kernel Learning
    Tzikas, Dimitris G.
    Likas, Aristidis C.
    Galatsanos, Nikolaos P.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06): : 926 - 937
  • [49] On unsupervised simultaneous kernel learning and data clustering
    Malhotra, Akshay
    Schizas, Ioannis D.
    PATTERN RECOGNITION, 2020, 108
  • [50] Unsupervised kernel learning for abnormal events detection
    Ren, Weiya
    Li, Guohui
    Sun, Boliang
    Huang, Kuihua
    VISUAL COMPUTER, 2015, 31 (03) : 245 - 255