Composite kernel learning

被引:5
|
作者
Marie Szafranski
Yves Grandvalet
Alain Rakotomamonjy
机构
[1] Université d’Évry Val d’Essonne,CNRS FRE 3190—IBISC
[2] Universités d’Aix-Marseille,CNRS UMR 6166—LIF
[3] Université de Technologie de Compiègne,CNRS UMR 6599—Heudiasyc
[4] Université de Rouen,EA 4108—LITIS
来源
Machine Learning | 2010年 / 79卷
关键词
Supervized learning; Support vector machine; Kernel learning; Structured kernels; Feature selection and sparsity;
D O I
暂无
中图分类号
学科分类号
摘要
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.
引用
收藏
页码:73 / 103
页数:30
相关论文
共 50 条
  • [31] Learning with Uncertain Kernel Matrix Set
    Lei Jia
    Shi-Zhong Liao
    Li-Zhong Ding
    Journal of Computer Science and Technology, 2010, 25 : 709 - 727
  • [32] Learning Kernel in Kernel-Based LDA for Face Recognition Under Illumination Variations
    Liu, Xiao-Zhang
    Yuen, Pong C.
    Feng, Guo-Can
    Chen, Wen-Sheng
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1019 - 1022
  • [33] A Modeling Method Based on Multiple Kernel Learning
    Wang, Shuzhou
    Li, Lianhe
    Chen, Yimei
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 2376 - 2378
  • [34] A Fast Reduced Kernel Extreme Learning Machine
    Deng, Wan-Yu
    Ong, Yew-Soon
    Zheng, Qing-Hua
    NEURAL NETWORKS, 2016, 76 : 29 - 38
  • [35] An element-wise kernel learning framework
    Alavi, Fatemeh
    Hashemi, Sattar
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9531 - 9547
  • [36] The characteristic of Quantum Kernel in initial learning process
    Tomono, Takao
    Natsubori, Satoko
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 875 - 878
  • [37] An element-wise kernel learning framework
    Fatemeh Alavi
    Sattar Hashemi
    Applied Intelligence, 2023, 53 : 9531 - 9547
  • [38] SCALABLE KERNEL LEARNING VIA THE DISCRIMINANT INFORMATION
    Al, Mert
    Hou, Zejiang
    Kung, Sun-Yuan
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3152 - 3156
  • [39] Multiple Kernel Learning for Emotion Recognition in the Wild
    Sikka, Karan
    Dykstra, Karmen
    Sathyanarayana, Suchitra
    Littlewort, Gwen
    Bartlett, Marian
    ICMI'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2013, : 517 - 524
  • [40] Learning the Conformal Transformation Kernel for Image Recognition
    Xiong, Huilin
    Yu, Wenxian
    Yang, Xin
    Swamy, M. N. S.
    Yu, Qiuze
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (01) : 149 - 163