Four-way classification of Alzheimer's disease using deep Siamese convolutional neural network with triplet-loss function

被引:42
作者
Hajamohideen, Faizal [1 ]
Shaffi, Noushath [1 ]
Mahmud, Mufti [2 ,3 ,4 ]
Subramanian, Karthikeyan [1 ]
Al Sariri, Arwa [1 ]
Vimbi, Viswan [1 ]
Abdesselam, Abdelhamid [5 ]
机构
[1] Univ Technol & Appl Sci, Coll Comp & Informat Sci, Jamia St, Sohar 311, Oman
[2] Nottingham Trent Univ, Dept Comp Sci, Clifton Lane, Nottingham NG11 8NS, England
[3] Nottingham Trent Univ, Med Technol Innovat Facil, Clifton Lane, Nottingham NG11 8NS, England
[4] Nottingham Trent Univ, Comp & Informat Res Ctr, Clifton Lane, Nottingham NG11 8NS, England
[5] Sultan Qaboos Univ, Dept Comp Sci, Muscat 123, Oman
关键词
MRI; Alzheimer's disease; Classification; Siamese; Triplet-loss; Mild cognitive impairment;
D O I
10.1186/s40708-023-00184-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer's disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.
引用
收藏
页数:13
相关论文
共 68 条
[51]   3D DenseNet Ensemble in 4-Way Classification of Alzheimer's Disease [J].
Ruiz, Juan ;
Mahmud, Mufti ;
Modasshir, Md ;
Kaiser, M. Shamim .
BRAIN INFORMATICS, BI 2020, 2020, 12241 :85-96
[52]   A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer's disease in MRI images [J].
Sathiyamoorthi, V ;
Ilavarasi, A. K. ;
Murugeswari, K. ;
Ahmed, Syed Thouheed ;
Devi, B. Aruna ;
Kalipindi, Murali .
MEASUREMENT, 2021, 171
[53]   Short-Term Prediction of COVID-19 Cases Using Machine Learning Models [J].
Satu, Md. Shahriare ;
Howlader, Koushik Chandra ;
Mahmud, Mufti ;
Kaiser, M. Shamim ;
Shariful Islam, Sheikh Mohammad ;
Quinn, Julian M. W. ;
Alyami, Salem A. ;
Moni, Mohammad Ali .
APPLIED SCIENCES-BASEL, 2021, 11 (09)
[54]  
Schroff F, 2015, PROC CVPR IEEE, P815, DOI 10.1109/CVPR.2015.7298682
[55]   Triplet-Loss Based Siamese Convolutional Neural Network for 4-Way Classification of Alzheimer's Disease [J].
Shaffi, Noushath ;
Hajamohideen, Faizal ;
Mahmud, Mufti ;
Abdesselam, Abdelhamid ;
Subramanian, Karthikeyan ;
Al Sariri, Arwa .
BRAIN INFORMATICS (BI 2022), 2022, 13406 :277-287
[56]  
Shen D, 2014, Machine Learning in Healthcare Informatics, P147, DOI DOI 10.1016/j.asoc.2013.03.021
[57]  
Shikalgar Arifa, 2020, Computing in Engineering and Technology. Proceedings of ICCET 2019. Advances in Intelligent Systems and Computing (AISC 1025), P511, DOI 10.1007/978-981-32-9515-5_49
[58]   MetaCOVID: A Siamese neural network framework with contrastive loss for n -shot diagnosis of COVID-19 patients [J].
Shorfuzzaman, Mohammad ;
Hossain, M. Shamim .
PATTERN RECOGNITION, 2021, 113
[59]  
Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, DOI 10.48550/ARXIV.1409.1556]
[60]   f ASSERT: A Fuzzy Assistive System for Children with Autism Using Internet of Things [J].
Sumi, Anjum Ismail ;
Zohora, Most Fatematuz ;
Mahjabeen, Maliha ;
Faria, Tasnova Jahan ;
Mahmud, Mufti ;
Kaiser, M. Shamim .
BRAIN INFORMATICS, BI 2018, 2018, 11309 :403-412