Four-way classification of Alzheimer's disease using deep Siamese convolutional neural network with triplet-loss function

被引:42
作者
Hajamohideen, Faizal [1 ]
Shaffi, Noushath [1 ]
Mahmud, Mufti [2 ,3 ,4 ]
Subramanian, Karthikeyan [1 ]
Al Sariri, Arwa [1 ]
Vimbi, Viswan [1 ]
Abdesselam, Abdelhamid [5 ]
机构
[1] Univ Technol & Appl Sci, Coll Comp & Informat Sci, Jamia St, Sohar 311, Oman
[2] Nottingham Trent Univ, Dept Comp Sci, Clifton Lane, Nottingham NG11 8NS, England
[3] Nottingham Trent Univ, Med Technol Innovat Facil, Clifton Lane, Nottingham NG11 8NS, England
[4] Nottingham Trent Univ, Comp & Informat Res Ctr, Clifton Lane, Nottingham NG11 8NS, England
[5] Sultan Qaboos Univ, Dept Comp Sci, Muscat 123, Oman
关键词
MRI; Alzheimer's disease; Classification; Siamese; Triplet-loss; Mild cognitive impairment;
D O I
10.1186/s40708-023-00184-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer's disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.
引用
收藏
页数:13
相关论文
共 68 条
[1]  
Adiba FI, 2020, International Journal of Automation Artificial Intelligence and Machine Learning, DOI [10.61797/ijaaiml.v1i1.45, DOI 10.61797/IJAAIML.V1I1.45]
[2]  
Ahmed Sabbir, 2022, Proceedings of Trends in Electronics and Health Informatics: TEHI 2021. Lecture Notes in Networks and Systems (376), P139, DOI 10.1007/978-981-16-8826-3_13
[3]   ADEPTNESS: Alzheimer's Disease Patient Management System Using Pervasive Sensors - Early Prototype and Preliminary Results [J].
Akhund, Tajim Md Niamat Ullah ;
Mahi, Md Julkar Nayeen ;
Tanvir, A. N. M. Hasnat ;
Mahmud, Mufti ;
Kaiser, M. Shamim .
BRAIN INFORMATICS, BI 2018, 2018, 11309 :413-422
[4]   A Monitoring System for Patients of Autism Spectrum Disorder Using Artificial Intelligence [J].
Al Banna, Md Hasan ;
Ghosh, Tapotosh ;
Abu Taher, Kazi ;
Kaiser, M. Shamim ;
Mahmud, Mufti .
BRAIN INFORMATICS, BI 2020, 2020, 12241 :251-262
[5]   Application of Mathematical Modeling in Prediction of COVID-19 Transmission Dynamics [J].
AlArjani, Ali ;
Nasseef, Md Taufiq ;
Kamal, Sanaa M. ;
Rao, B. V. Subba ;
Mahmud, Mufti ;
Uddin, Md Sharif .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (08) :10163-10186
[6]  
Bhapkar H.R., 2021, LNDECT, V60, P57, DOI [DOI 10.1007/978, 10.1007/978- 981-15-9682-7_7, DOI 10.1007/978-981-15-9682-7_7]
[7]   Brain structural disorders detection and classification approaches: a review [J].
Bhatele, Kirti Raj ;
Bhadauria, Santa Singh .
ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (05) :3349-3401
[8]   An XAI Based Autism Detection: The Context Behind the Detection [J].
Biswas, Milon ;
Kaiser, M. Shamim ;
Mahmud, Mufti ;
Al Mamun, Shamim ;
Hossain, Md Shahadat ;
Rahman, Muhammad Arifur .
BRAIN INFORMATICS, BI 2021, 2021, 12960 :448-459
[9]   Indoor Navigation Support System for Patients with Neurodegenerative Diseases [J].
Biswas, Milon ;
Rahman, Ashiqur ;
Kaiser, M. Shamim ;
Al Mamun, Shamim ;
Mizan, K. Shayekh Ebne ;
Islam, Mohammad Shahidul ;
Mahmud, Mufti .
BRAIN INFORMATICS, BI 2021, 2021, 12960 :411-422
[10]   ACCU3RATE: A mobile health application rating scale based on user reviews [J].
Biswas, Milon ;
Tania, Marzia Hoque ;
Kaiser, M. Shamim ;
Kabir, Russell ;
Mahmud, Mufti ;
Kemal, Atika Ahmad .
PLOS ONE, 2021, 16 (12)