Uniform global well-posedness of the Navier–Stokes–Coriolis system in a new critical space

被引:0
作者
Marcelo F. de Almeida
Lucas C. F. Ferreira
Lidiane S. M. Lima
机构
[1] Universidade Federal de Sergipe,Departamento de Matemática
[2] Universidade Estadual de Campinas,IMECC
[3] Universidade Federal de Goiás, Departamento de Matemática
来源
Mathematische Zeitschrift | 2017年 / 287卷
关键词
Coriolis force; Navier–Stokes; Uniform global well-posedness; Critical spaces; 35Q30; 35A01; 76D03; 76D05; 76U05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove global well-posedness for the Navier–Stokes–Coriolis system (NSC) in a critical space whose definition is based on Fourier transform, namely the Fourier–Besov–Morrey space FN1,μ,∞μ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {FN}_{1,\mu ,\infty }^{\mu -1}$$\end{document} with 0<μ<3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\mu <3$$\end{document}. The smallness condition on the initial data is uniform with respect to the angular velocity ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}. Our result provides a new class for the uniform global solvability of (NSC) and covers some previous ones. For μ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu =0$$\end{document}, (NSC) is ill-posedness in FN1,μ,∞μ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {FN}_{1,\mu ,\infty }^{\mu -1}$$\end{document} which shows the optimality of the results with respect to the space parameter μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >0$$\end{document}. The lack of Hausdorff–Young inequality in Morrey spaces suggests that there are no inclusions between FN1,μ,∞μ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {FN}_{1,\mu ,\infty }^{\mu -1}$$\end{document} and the largest previously known existence classes of Kozono–Yamazaki (Besov–Morrey space) and Koch–Tataru (BMO-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textit{BMO}^{-1}$$\end{document}) for Navier–Stokes equations (3DNS). So, taking in particular ω=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =0$$\end{document}, we obtain a critical initial data class that seems to be new for global existence of solutions of (3DNS).
引用
收藏
页码:735 / 750
页数:15
相关论文
共 69 条
[1]  
Babin A(1999)Global regularity of 3D rotating Navier–Stokes equations for resonant domains Indiana Univ. Math. J. 48 1133-1176
[2]  
Mahalov A(2001)3D Navier–Stokes and Euler equations with initial data characterized by uniformly large vorticity Indiana Univ. Math. J. 50 1-35
[3]  
Nicolaenko B(1996)Self-similar solutions in weak Rev. Mat. Iberoam. 12 411-439
[4]  
Babin A(1981)-spaces of the Navier–Stokes equations Ann. de l’Ecole Norm. Sup. 14 209-246
[5]  
Mahalov A(2008)Calcul symbolique et propagation des singularitiés pour les équations aux dérivées partielles nonlinéaires J. Funct. Anal. 255 2233-2247
[6]  
Nicolaenko B(1997)Ill-posedness of the Navier–Stokes equations in a critical space in 3D Rev. Mat. Iberoam. 13 515-541
[7]  
Barraza OA(2012)A generalization of a theorem by Kato on Navier–Stokes equations Nonlinear Anal. 75 3754-3760
[8]  
Bony JM(2013)Global well-posedness for Navier–Stokes equations in critical Fourier–Herz spaces Pac. J. Math. 262 263-283
[9]  
Bourgain J(2013)Global well-posedness for the 3D rotating Navier–Stokes equations with highly oscillating initial data J. Math. Anal. Appl. 405 362-372
[10]  
Pavlovic N(2014)On the local solvability in Morrey spaces of the Navier–Stokes equations in a rotating frame Monatsh. Math. 175 491-509