Analysis of HDG Methods for Oseen Equations

被引:0
作者
Aycil Cesmelioglu
Bernardo Cockburn
Ngoc Cuong Nguyen
Jaume Peraire
机构
[1] Oakland University,Department of Mathematics and Statistics
[2] University of Minnesota,School of Mathematics
[3] Massachusetts Institute of Technology,Department of Aeronautics and Astronautics
来源
Journal of Scientific Computing | 2013年 / 55卷
关键词
Oseen equations; Discontinuous Galerkin methods; Hybridizable; Postprocessing; Superconvergence;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a hybridizable discontinuous Galerkin (HDG) method to numerically solve the Oseen equations which can be seen as the linearized version of the incompressible Navier-Stokes equations. We use same polynomial degree to approximate the velocity, its gradient and the pressure. With a special projection and postprocessing, we obtain optimal convergence for the velocity gradient and pressure and superconvergence for the velocity. Numerical results supporting our theoretical results are provided.
引用
收藏
页码:392 / 431
页数:39
相关论文
共 50 条
  • [21] Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations II: HHO-Inspired Methods
    Chen, Gang
    Cockburn, Bernardo
    Singler, John R.
    Zhang, Yangwen
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (02) : 477 - 499
  • [22] The local discontinuous Galerkin method for the Oseen equations
    Cockburn, B
    Kanschat, G
    Schötzau, D
    MATHEMATICS OF COMPUTATION, 2004, 73 (246) : 569 - 593
  • [23] Upscaled HDG Methods for Brinkman Equations with High-Contrast Heterogeneous Coefficient
    Li, Guanglian
    Shi, Ke
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (03) : 1780 - 1800
  • [24] A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell's equations
    Cockburn, Bernardo
    Du, Shukai
    Sanchez, Manuel A.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2097 - 2129
  • [25] Devising HDG methods for Stokes flow: An overview
    Cockburn, Bernardo
    Shi, Ke
    COMPUTERS & FLUIDS, 2014, 98 : 221 - 229
  • [26] Analysis and Approximation of a Vorticity–Velocity–Pressure Formulation for the Oseen Equations
    V. Anaya
    A. Bouharguane
    D. Mora
    C. Reales
    R. Ruiz-Baier
    N. Seloula
    H. Torres
    Journal of Scientific Computing, 2019, 80 : 1577 - 1606
  • [27] Error analysis for a vorticity/Bernoulli pressure formulation for the Oseen equations
    Anaya, Veronica
    Mora, David
    Pani, Amiya K.
    Ruiz-Baier, Ricardo
    JOURNAL OF NUMERICAL MATHEMATICS, 2022, 30 (03) : 209 - 230
  • [28] Analysis of a family of HDG methods for second order elliptic problems
    Li, Binjie
    Xie, Xiaoping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 307 : 37 - 51
  • [29] SUPERCONVERGENT HDG METHODS ON ISOPARAMETRIC ELEMENTS FOR SECOND-ORDER ELLIPTIC PROBLEMS
    Cockburn, Bernardo
    Qiu, Weifeng
    Shi, Ke
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) : 1417 - 1432
  • [30] A Superconvergent HDG Method for the Maxwell Equations
    Huangxin Chen
    Weifeng Qiu
    Ke Shi
    Manuel Solano
    Journal of Scientific Computing, 2017, 70 : 1010 - 1029