Lattice points in d-dimensional spherical segments

被引:0
作者
Martin Ortiz Ramirez
机构
[1] University of Oxford,
来源
Monatshefte für Mathematik | 2021年 / 194卷
关键词
Discrete geometry; Lattice points on spheres; Diophantine approximation; 11P21; 11K60;
D O I
暂无
中图分类号
学科分类号
摘要
We study lattice points in d-dimensional spheres, and count their number in thin spherical segments. We found an upper bound depending only on the radius of the sphere and opening angle of the segment. To obtain this bound we slice the segment by hyperplanes of rational direction, and then cover an arbitrary segment with one having rational direction. Diophantine approximation can be used to obtain the best rational direction possible.
引用
收藏
页码:167 / 179
页数:12
相关论文
共 16 条
[1]  
Benatar J(2017)Random waves on Int. Math. Res. Not. 2019 3032-3075
[2]  
Maffucci RW(2012): nodal area variance and lattice point correlations Geom. Funct. Anal. 22 878-937
[3]  
Bourgain J(2009)Restriction of toral eigenfunctions to hypersurfaces and nodal sets Can. J. Math.-J. Can. De Math. 61 12-90
[4]  
Rudnick Z(1988)Close lattice points on circles Invent. Math. 92 73-737
[5]  
Cilleruelo J(2013)Hyperbolic distribution problems and half-integral weight Maass forms Ann. Math. (2) 177 699-5254
[6]  
Granville A(2017)Nodal length fluctuations for arithmetic random waves J. Funct. Anal. 272 5218-335
[7]  
Duke W(2008)Nodal intersections for random waves against a segment on the Ann. de l’Inst. Fourier 58 299-undefined
[8]  
Krishnapur M(2018)-dimensional torus Nonlinearity 31 4472-undefined
[9]  
Kurlberg P(undefined)The Leray measure of nodal sets for random eigenfunctions on the torus undefined undefined undefined-undefined
[10]  
Wigman I(undefined)Asymptotic distribution of nodal intersections for arithmetic random waves undefined undefined undefined-undefined