Two-parameter process limits for infinite-server queues with dependent service times via chaining bounds

被引:0
作者
Guodong Pang
Yuhang Zhou
机构
[1] Pennsylvania State University,The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering
来源
Queueing Systems | 2018年 / 88卷
关键词
Infinite-server queue; Dependent service times; -Mixing; Two-parameter processes; Functional limit theorems; Maximal inequalities; The method of chaining; 60F05; 60F17; 60K25; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
We prove two-parameter process limits for infinite-server queues with weakly dependent service times satisfying the ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-mixing condition. The two-parameter processes keep track of the elapsed or residual service times of customers in the system. We use the new methodology developed in Pang and Zhou (Stoch Process Appl 127(5):1375–1416, 2017) to prove weak convergence of two-parameter stochastic processes. Specifically, we employ the maximal inequalities for two-parameter queueing processes resulting from the method of chaining. This new methodology requires a weaker mixing condition on the service times than the ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-mixing condition in Pang and Whitt (Queueing Syst 73(2):119–146, 2013), as well as fewer regularity conditions on the service time distribution function.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 44 条
  • [1] Berkes I(1997)An almost sure invariance principles for empirical distribution function of mixing random variables Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 41 115-137
  • [2] Philipp W(2009)Asymptotic results for the empirical process of stationary sequences Stoch. Process. Appl. 119 1298-1324
  • [3] Berkes I(2005)Basic properties of strong mixing conditions: a survey and some open questions Probab. Surv. 2 107-144
  • [4] Hörmann S(1971)Convergence criteria for multiparameter stochastic processes and some applications Ann. Math. Stat. 42 1656-1670
  • [5] Schauer J(2010)Fluid limits of many-server queues with reneging Ann. Appl. Probab. 20 2204-2260
  • [6] Bradley RC(2011)Law of large numbers limits for many-server queues Ann. Appl. Probab. 21 33-114
  • [7] Bickel PJ(2011)SPDE limits for many-server queues Ann. Appl. Probab. 23 145-229
  • [8] Wichura MJ(1997)A heavy-traffic analysis of a closed queueing system with a Queueing Syst. 25 235-280
  • [9] Kang W(2012) service center Queueing Syst. 71 405-444
  • [10] Ramanan K(2014)The Ann. Appl. Probab. 24 378-421